LE Quoc Dat
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -10,14 +10,105 @@ tags:
|
|
10 |
- qwen2
|
11 |
- trl
|
12 |
- sft
|
|
|
|
|
13 |
---
|
14 |
|
15 |
-
# Uploaded model
|
16 |
|
17 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
- **License:** apache-2.0
|
19 |
-
- **Finetuned from model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
|
|
|
10 |
- qwen2
|
11 |
- trl
|
12 |
- sft
|
13 |
+
- fast-apply
|
14 |
+
- instant-apply
|
15 |
---
|
16 |
|
|
|
17 |
|
18 |
+
# FastApply-7B-v1.0
|
19 |
+
|
20 |
+
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
|
21 |
+
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
|
22 |
+
|
23 |
+
## Model Details
|
24 |
+
|
25 |
+
### Basic Information
|
26 |
+
|
27 |
+
- **Developed by:** Kortix
|
28 |
- **License:** apache-2.0
|
29 |
+
- **Finetuned from model:** [unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct-bnb-4bit)
|
30 |
+
|
31 |
+
### Model Description
|
32 |
+
|
33 |
+
FastApply-7B-v1.0 is a 7B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/).
|
34 |
+
It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models.
|
35 |
+
|
36 |
+
The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 150 tokens/second.
|
37 |
+
|
38 |
+
## Intended Use
|
39 |
+
|
40 |
+
FastApply-7B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for:
|
41 |
+
|
42 |
+
- Instant code application tasks
|
43 |
+
- Full file edits
|
44 |
+
- Integration with AI-powered code editors like Aider and PearAI
|
45 |
+
- Local tools to reduce the cost of frontier model output
|
46 |
+
|
47 |
+
## Inference template
|
48 |
+
|
49 |
+
FastApply-7B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference:
|
50 |
+
|
51 |
+
```
|
52 |
+
<|im_start|>user
|
53 |
+
Merge all changes from the <update> snippet into the <code> below.
|
54 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
55 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
56 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
57 |
+
|
58 |
+
<code>{original_code}</code>
|
59 |
+
|
60 |
+
<update>{update_snippet}</update>
|
61 |
+
|
62 |
+
Provide the complete updated code."""
|
63 |
+
```
|
64 |
+
|
65 |
+
The model's output is structured as:
|
66 |
+
|
67 |
+
```
|
68 |
+
<|im_start|>assistant
|
69 |
+
<updated-code>[Full-complete updated file]</updatedcode>
|
70 |
+
```
|
71 |
+
|
72 |
+
## Additional Information
|
73 |
+
|
74 |
+
For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/Kortex/FastApply).
|
75 |
+
|
76 |
+
## How to Use
|
77 |
+
|
78 |
+
To use the model, you can load it using the Hugging Face Transformers library:
|
79 |
+
|
80 |
+
|
81 |
+
```python
|
82 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
+
|
84 |
+
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-7B-v1.0")
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-7B-v1.0")
|
86 |
+
|
87 |
+
# Prepare your input following the prompt structure mentioned above
|
88 |
+
input_text = """<|im_start|>user
|
89 |
+
Merge all changes from the <update> snippet into the <code> below.
|
90 |
+
- Preserve the code's structure, order, comments, and indentation exactly.
|
91 |
+
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
|
92 |
+
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
|
93 |
+
|
94 |
+
<code>{original_code}</code>
|
95 |
+
|
96 |
+
<update>{update_snippet}</update>
|
97 |
+
|
98 |
+
Provide the complete updated code."""
|
99 |
+
|
100 |
+
input_text = input_text.format(
|
101 |
+
original_code=original_code,
|
102 |
+
update_snippet=update_snippet,
|
103 |
+
).strip() + tokenizer.eos_token
|
104 |
+
|
105 |
+
# Generate the response
|
106 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
107 |
+
output = model.generate(input_ids, max_length=8192)
|
108 |
+
response = tokenizer.decode(output[0])
|
109 |
|
110 |
+
# Extract the updated code from the response
|
111 |
+
updated_code = response.split("<updated-code>")[1].split("</updatedcode>")[0]
|
112 |
|
113 |
+
print(updated_code)
|
114 |
+
```
|