KoichiYasuoka
commited on
Commit
·
33127b8
1
Parent(s):
8c1a347
bug fix
Browse files
ud.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import TokenClassificationPipeline
|
2 |
|
3 |
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
@@ -13,17 +14,17 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
13 |
else:
|
14 |
t.append((k,(s,e)))
|
15 |
m=[(0,0)]+[j for i,j in t]+[(0,0)]
|
16 |
-
r=super().preprocess(sentence=" ".join(i for i,j in t))
|
17 |
-
w=self.tokenizer.convert_ids_to_tokens(r["input_ids"][0])
|
18 |
if len(m)!=len(w):
|
19 |
for i,j in enumerate(w):
|
20 |
if j.endswith("@@"):
|
21 |
s,e=m[i]
|
22 |
m.insert(i+1,(s+len(j)-2,e))
|
23 |
m[i]=(s,s+len(j)-2)
|
24 |
-
r["offset_mapping"]=torch.tensor([m]
|
25 |
-
r["sentence"]=sentence
|
26 |
-
return r
|
27 |
def _forward(self,model_inputs):
|
28 |
import torch
|
29 |
v=model_inputs["input_ids"][0].tolist()
|
@@ -31,23 +32,24 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
31 |
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
32 |
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
33 |
def postprocess(self,model_outputs,**kwargs):
|
34 |
-
import numpy
|
35 |
if "logits" not in model_outputs:
|
36 |
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
|
37 |
e=model_outputs["logits"].numpy()
|
38 |
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
39 |
-
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0
|
40 |
g=self.model.config.label2id["X|_|goeswith"]
|
41 |
-
r=numpy.tri(e.shape[0])
|
42 |
for i in range(e.shape[0]):
|
43 |
for j in range(i+2,e.shape[1]):
|
44 |
-
r[i,j]=
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
h=self.chu_liu_edmonds(m)
|
48 |
z=[i for i,j in enumerate(h) if i==j]
|
49 |
if len(z)>1:
|
50 |
-
k,h=z[numpy.
|
51 |
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
52 |
h=self.chu_liu_edmonds(m)
|
53 |
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
|
@@ -65,8 +67,7 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
65 |
u+="\t".join([str(i+1),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
66 |
return u+"\n"
|
67 |
def chu_liu_edmonds(self,matrix):
|
68 |
-
|
69 |
-
h=numpy.nanargmax(matrix,axis=0)
|
70 |
x=[-1 if i==j else j for i,j in enumerate(h)]
|
71 |
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
72 |
y=[]
|
@@ -77,10 +78,10 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
77 |
if max(x)<0:
|
78 |
return h
|
79 |
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
80 |
-
z=matrix-numpy.
|
81 |
-
m=numpy.block([[z[x,:][:,x],numpy.
|
82 |
-
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.
|
83 |
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
84 |
-
i=y[numpy.
|
85 |
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
86 |
return h
|
|
|
1 |
+
import numpy
|
2 |
from transformers import TokenClassificationPipeline
|
3 |
|
4 |
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
|
14 |
else:
|
15 |
t.append((k,(s,e)))
|
16 |
m=[(0,0)]+[j for i,j in t]+[(0,0)]
|
17 |
+
r=list(super().preprocess(sentence=" ".join(i for i,j in t)))
|
18 |
+
w=self.tokenizer.convert_ids_to_tokens(r[0]["input_ids"][0])
|
19 |
if len(m)!=len(w):
|
20 |
for i,j in enumerate(w):
|
21 |
if j.endswith("@@"):
|
22 |
s,e=m[i]
|
23 |
m.insert(i+1,(s+len(j)-2,e))
|
24 |
m[i]=(s,s+len(j)-2)
|
25 |
+
r[0]["offset_mapping"]=torch.tensor([m]).to(self.device)
|
26 |
+
r[0]["sentence"]=sentence
|
27 |
+
return iter(r)
|
28 |
def _forward(self,model_inputs):
|
29 |
import torch
|
30 |
v=model_inputs["input_ids"][0].tolist()
|
|
|
32 |
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
33 |
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
34 |
def postprocess(self,model_outputs,**kwargs):
|
|
|
35 |
if "logits" not in model_outputs:
|
36 |
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
|
37 |
e=model_outputs["logits"].numpy()
|
38 |
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
39 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
|
40 |
g=self.model.config.label2id["X|_|goeswith"]
|
41 |
+
m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
|
42 |
for i in range(e.shape[0]):
|
43 |
for j in range(i+2,e.shape[1]):
|
44 |
+
r[i,j]=1
|
45 |
+
if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
|
46 |
+
r[i,j]=r[i,j-1]
|
47 |
+
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
|
48 |
+
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
|
49 |
h=self.chu_liu_edmonds(m)
|
50 |
z=[i for i,j in enumerate(h) if i==j]
|
51 |
if len(z)>1:
|
52 |
+
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
|
53 |
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
54 |
h=self.chu_liu_edmonds(m)
|
55 |
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
|
|
|
67 |
u+="\t".join([str(i+1),t[s:e],t[s:e] if g else "_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
68 |
return u+"\n"
|
69 |
def chu_liu_edmonds(self,matrix):
|
70 |
+
h=numpy.argmax(matrix,axis=0)
|
|
|
71 |
x=[-1 if i==j else j for i,j in enumerate(h)]
|
72 |
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
73 |
y=[]
|
|
|
78 |
if max(x)<0:
|
79 |
return h
|
80 |
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
81 |
+
z=matrix-numpy.max(matrix,axis=0)
|
82 |
+
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
|
83 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
84 |
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
85 |
+
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
86 |
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
87 |
return h
|