#! /usr/bin/python3 src="KoichiYasuoka/modernbert-base-thai-wikipedia-upos" tgt="KoichiYasuoka/modernbert-base-thai-wikipedia-ud-triangular" import os os.system("""D=spaCy-Thai/UD_Thai-Corpora test -d $D || git clone --depth=1 https://github.com/KoichiYasuoka/spaCy-Thai nawk 'BEGIN{FS=OFS="\\t"} {if(NF==10&&$1~/^[1-9][0-9]*$/||$0~/^# text =/)u=u$0"\\n"; else if($0==""){f=(FILENAME~/test/)?"test":(FILENAME~/dev/)?"dev":"train"; if(u~/\\t0\\troot\\t/)print u>f".conllu"; u=""} }' $D/*-ud-*.conllu""") class UDTriangularDataset(object): def __init__(self,conllu,tokenizer): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.seeks=[0] label=set(["SYM|x","X|x"]) dep=set(["X|x|r-goeswith"]) s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] q="" if w[5]=="_" else "|"+w[5] d=("|" if w[6]=="0" else "|l-" if int(w[0])i or sum([1 if j==i+1 else 0 for j in h[i+1:]])>0 else "x" for i,k in enumerate(h)] p=[t[3]+"|"+x[i] if t[5]=="_" else t[3]+"|"+x[i]+"|"+t[5] for i,t in enumerate(c)] d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])8192: try: i=ids.index(self.tokenizer.sep_token_id,ids.index(self.tokenizer.sep_token_id,i+1)+1)-1 except: break while len(ids)>8192 and ids[i]!=self.tokenizer.sep_token_id: if upos[i].endswith("|x"): ids.pop(i) upos.pop(i) i-=1 else: break return {"input_ids":ids[:8192],"labels":[self.label2id[p] for p in upos[:8192]]} from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer tkz=AutoTokenizer.from_pretrained(src) trainDS=UDTriangularDataset("train.conllu",tkz) devDS=UDTriangularDataset("dev.conllu",tkz) testDS=UDTriangularDataset("test.conllu",tkz) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True) mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) tkz.save_pretrained(tgt)