#! /usr/bin/python3 src="scb10x/llama3.2-typhoon2-1b" tgt="KoichiYasuoka/llama3.2-typhoon2-1b-ud-embeds" url="https://github.com/KoichiYasuoka/spaCy-Thai" import os d=os.path.basename(url) os.system("test -d "+d+" || git clone --depth=1 "+url) os.system("for F in train dev test ; do cp "+d+"/UD_Thai-Corpora/th_tud-ud-$F.conllu $F.conllu ; done") class UDEmbedsDataset(object): def __init__(self,conllu,tokenizer,oldtokenizer=None,embeddings=None): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.oldtokenizer=oldtokenizer if oldtokenizer else tokenizer self.embeddings=embeddings self.seeks=[0] label=set(["SYM","SYM.","SYM|_"]) dep=set() s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] q="" if w[5]=="_" else "|"+w[5] d=("|" if w[6]=="0" else "|l-" if int(w[0])j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)] v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] ids,upos=[self.tokenizer.bos_token_id],["SYM."] for i,(j,k) in enumerate(zip(v,c)): if j==[]: j=[self.tokenizer.unk_token_id] p=k[3] if x[i] else k[3]+"." ids+=j upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1) x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)] if len(x)<88: x=[True]*len(x) w=(len(x)+1)*(len(x)+2)/2+len(ids) else: w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+len(ids)+1 for i in range(len(x)): if x[i]==False and w+len(x)-i<4096: x[i]=True w+=len(x)-i+1 v=self.oldtokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)] d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])0 and w>4096: while w>4096: if upos[-1].endswith("|_"): upos.pop(-1) idx.pop(-1) w-=1 else: break idx.append(-1) upos.append("SYM|_") with torch.no_grad(): m=[] for j in v: if j==[]: j=[self.tokenizer.convert_tokens_to_ids("<|python_tag|>")] m.append(self.embeddings[j,:].sum(axis=0)) m.append(self.embeddings[self.tokenizer.eos_token_id]) emb=torch.stack(m) return{"inputs_embeds":torch.vstack((self.embeddings[ids,:],emb[idx,:])),"labels":[self.label2id[p] for p in upos]} from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer from tokenizers.pre_tokenizers import Sequence,Split,Whitespace from tokenizers import Regex from copy import deepcopy otk=AutoTokenizer.from_pretrained(src) ntk=deepcopy(otk) ntk.backend_tokenizer.pre_tokenizer=Sequence([Whitespace(),Split(Regex("[\u0e40-\u0e44]?[\u0e01-\u0e2e][\u0e30-\u0e3a\u0e45\u0e47-\u0e4e]*|."),"isolated"),otk.backend_tokenizer.pre_tokenizer]) trainDS=UDEmbedsDataset("train.conllu",ntk,otk) devDS=UDEmbedsDataset("dev.conllu",ntk,otk) testDS=UDEmbedsDataset("test.conllu",ntk,otk) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True) mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True) trainDS.embeddings=mdl.get_input_embeddings().weight arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) otk.save_pretrained(tgt)