#! /usr/bin/python3 src="goldfish-models/tha_thai_1000mb" tgt="KoichiYasuoka/goldfish-gpt2-thai-ud-causal" url="https://github.com/KoichiYasuoka/spaCy-Thai" import os,json,re from transformers import AutoTokenizer,PreTrainedTokenizerFast,AutoConfig,GPT2ForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer from tokenizers import pre_tokenizers,decoders d=os.path.join(os.path.basename(url),"UD_Thai-Corpora") os.system("test -d "+d+" || git clone --depth=1 "+url) os.system("for F in train dev test ; do cat "+d+"/*-$F*.conllu > $F.conllu ; done") tkz=AutoTokenizer.from_pretrained(src,add_prefix_space=False,legacy=False,model_max_length=768) tkz.backend_tokenizer.pre_tokenizer=pre_tokenizers.Metaspace(prepend_scheme="never") tkz.backend_tokenizer.decoder=decoders.Metaspace(prepend_scheme="never") tkz.save_pretrained("tmpdir") d=json.loads(tkz.backend_tokenizer.to_str()) form=set() for t in tkz.special_tokens_map.values(): if type(t)==list: for k in t: form.add(k) else: form.add(t) with open("train.conllu","r",encoding="utf-8") as r: for s in r: w=s.split("\t") if len(w)==10 and w[0].isdecimal(): form.add(w[1]) tcc=re.compile("^[\u0e40-\u0e44]?[\u0e01-\u0e2e][\u0e30-\u0e3a\u0e45\u0e47-\u0e4e]*$") for t in d["model"]["vocab"]: if len(t[0])>1 and t[0] not in form: if not tcc.match(t[0]): t[1]*=len(t[0]) tkz.backend_tokenizer.from_str(json.dumps(d)).save("tmpdir/tokenizer.json") tkz=PreTrainedTokenizerFast.from_pretrained("tmpdir") class UDCausalDataset(object): def __init__(self,conllu,tokenizer,embeddings=None): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.embeddings=embeddings self.max_tokens=3 self.seeks=[(0,0)] label=set(["SYM"]) dep=set() s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append((self.conllu.tell(),0)) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): p=w[3] if w[5]=="_" else w[3]+"|"+w[5] label.add(p) if w[6].isdecimal(): dep.add(p+("|" if w[6]=="0" else "|l-" if int(w[0])0: deps.append((int(w[6]),w[7])) v=self.tokenizer(form,add_special_tokens=False) if t==0: i,u=[self.tokenizer.cls_token_id],["SYM"] for j,(x,y) in enumerate(zip(v["input_ids"],upos)): if x!=[]: i+=x u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1) emb=self.embeddings pad=self.tokenizer.pad_token_id else: import torch m=[] for x in v["input_ids"]: if x==[]: m.append(self.embeddings[self.tokenizer.unk_token_id,:]) else: m.append(self.embeddings[x,:].sum(axis=0)) m.append(self.embeddings[self.tokenizer.sep_token_id,:]) m.append(self.embeddings[self.tokenizer.pad_token_id,:]) m.append(self.embeddings[self.tokenizer.cls_token_id,:]) emb=torch.stack(m) i,u=list(range(-1,len(upos)+1)),["SYM"]+upos+["SYM"] i.append(t-1) k,d=deps[t-1] u.append(upos[t-1]+"|"+d if k==0 else upos[t-1]) for j in range(t,len(upos)): i.append(j) a,b=deps[j] u.append(upos[j]+"|r-"+b if a==t else upos[t-1]+"|l-"+d if j+1==k else upos[j]) pad=-2 j=self.max_tokens-len(i) if j>0: ids=i+[pad]*j upos=u+["SYM"]*j else: ids=i[0:self.max_tokens] upos=u[0:self.max_tokens] return {"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]} trainDS=UDCausalDataset("train.conllu",tkz) devDS=UDCausalDataset("dev.conllu",tkz) testDS=UDCausalDataset("test.conllu",tkz) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True) mdl=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True) trainDS.embeddings=mdl.get_input_embeddings().weight trainDS.max_tokens=min(trainDS.max_tokens,cfg.max_position_embeddings) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=32,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS) trn.train() trn.save_model(tgt) tkz.save_pretrained(tgt)