--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8060 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4315 | 1.0 | 7 | 0.5652 | 0.94 | | 1.8803 | 2.0 | 14 | 0.5438 | 0.9 | | 1.236 | 3.0 | 21 | 0.5891 | 0.9 | | 0.6882 | 4.0 | 28 | 0.6378 | 0.9 | | 0.6126 | 5.0 | 35 | 0.6965 | 0.88 | | 0.6847 | 6.0 | 42 | 0.7258 | 0.84 | | 0.3871 | 7.0 | 49 | 0.7459 | 0.84 | | 0.2981 | 8.0 | 56 | 0.8024 | 0.86 | | 0.1321 | 9.0 | 63 | 0.8140 | 0.86 | | 0.2443 | 10.0 | 70 | 0.8060 | 0.86 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3