import torch from torchvision import transforms from huggingface_hub import hf_hub_download import json import io import base64 from PIL import Image from omegaconf import OmegaConf from model import Generator class EndpointHandler: def __init__(self, path=''): self.transform = transforms.Compose( [ transforms.ToImage(), transforms.ToDtype(torch.float32, scale=True), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ] ) repo_id = "Kiwinicki/sat2map-generator" generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth") config_path = hf_hub_download(repo_id=repo_id, filename="config.json") model_path = hf_hub_download(repo_id=repo_id, filename="model.py") with open(config_path, "r") as f: config_dict = json.load(f) cfg = OmegaConf.create(config_dict) self.generator = Generator(cfg) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.generator.load_state_dict(torch.load(generator_path, map_location=self.device)) self.generator.eval() def __call__(self, data: dict[str, any]) -> dict[str, str]: base64_image = data.get('inputs') input_tensor = self._decode_base64_image(base64_image) # print('Input tensor shape: ' + str(input_tensor.shape)) output_tensor = self.generator(input_tensor.to(self.device)) output_tensor = output_tensor.squeeze(0) output_image = transforms.ToPILImage()(output_tensor) output_image = output_image.convert('RGB') output_buffer = io.BytesIO() output_image.save(output_buffer, format="png") base64_output = base64.b64encode(output_buffer.getvalue()).decode('utf-8') return {"output": base64_output} def _decode_base64_image(self, base64_image: str) -> torch.Tensor: image_decoded = base64.b64decode(base64_image) image = Image.open(io.BytesIO(image_decoded)).convert('RGB') image_tensor: torch.Tensor = self.transform(image) image_tensor = image_tensor.unsqueeze(0) return image_tensor