sat2map-generator / handler.py
Kiwinicki's picture
Add a custom handler for Inference Endpoints (#1)
4df01b4 verified
raw
history blame
2.27 kB
import torch
from torchvision import transforms
from huggingface_hub import hf_hub_download
import json
import io
import base64
from PIL import Image
from omegaconf import OmegaConf
from model import Generator
class EndpointHandler:
def __init__(self, path=''):
self.transform = transforms.Compose(
[
transforms.ToImage(),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
self.generator = Generator(cfg)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.generator.load_state_dict(torch.load(generator_path, map_location=self.device))
self.generator.eval()
def __call__(self, data: dict[str, any]) -> dict[str, str]:
base64_image = data.get('inputs')
input_tensor = self._decode_base64_image(base64_image)
# print('Input tensor shape: ' + str(input_tensor.shape))
output_tensor = self.generator(input_tensor.to(self.device))
output_tensor = output_tensor.squeeze(0)
output_image = transforms.ToPILImage()(output_tensor)
output_image = output_image.convert('RGB')
output_buffer = io.BytesIO()
output_image.save(output_buffer, format="png")
base64_output = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
return {"output": base64_output}
def _decode_base64_image(self, base64_image: str) -> torch.Tensor:
image_decoded = base64.b64decode(base64_image)
image = Image.open(io.BytesIO(image_decoded)).convert('RGB')
image_tensor: torch.Tensor = self.transform(image)
image_tensor = image_tensor.unsqueeze(0)
return image_tensor