Kittitouch commited on
Commit
f2d09b2
·
1 Parent(s): 64db7d6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.71 +/- 1.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b938708b616d6984067408b9daa32e3ec43cfaa118680394ac62b52b7164b184
3
+ size 108059
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9792e3b790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f9792e99510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678285176363967108,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAawbXPwt1QT9RHO0+slTLv1ybm77g7VS/4Qi/PswyW76wgVc/8xCvv2SfpL+D/qo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrmUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]]",
60
+ "desired_goal": "[[ 1.6798834 0.7556922 0.46310666]\n [-1.5885222 -0.30391967 -0.8317547 ]\n [ 0.37311462 -0.21406096 0.8418226 ]\n [-1.3677047 -1.2861142 1.3358921 ]]",
61
+ "observation": "[[ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2sMEPhS4nTuW4AI+uLoTPtADDz4XbJc+MCC/PaSZLrl4gF0+HpWYPRWTVzyrB3c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 1.2965336e-01 4.8132036e-03 1.2780985e-01]\n [ 1.4426696e-01 1.3966298e-01 2.9574654e-01]\n [ 9.3323112e-02 -1.6651169e-04 2.1631038e-01]\n [ 7.4503168e-02 1.3157626e-02 1.5077512e-02]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPrMkQE1lL8CUhpRSlIwBbJRLMowBdJRHQKiQxNW2gFp1fZQoaAZoCWgPQwg9Sbpm8uUjwJSGlFKUaBVLMmgWR0CokBa2nbZfdX2UKGgGaAloD0MIXcDLDBtVGsCUhpRSlGgVSzJoFkdAqI98UypJgHV9lChoBmgJaA9DCEKUL2ghkSfAlIaUUpRoFUsyaBZHQKiPINWEK3N1fZQoaAZoCWgPQwhtH/KWq/8VwJSGlFKUaBVLMmgWR0CokgRh2GIsdX2UKGgGaAloD0MIGHjuPVwSHsCUhpRSlGgVSzJoFkdAqJFW74BV/HV9lChoBmgJaA9DCCNKe4MvXBvAlIaUUpRoFUsyaBZHQKiQvNC7btZ1fZQoaAZoCWgPQwi7ufjbnoAZwJSGlFKUaBVLMmgWR0CokGEsrd30dX2UKGgGaAloD0MIcJUnEHaKDsCUhpRSlGgVSzJoFkdAqJM5X2dupHV9lChoBmgJaA9DCDp0et6NNRPAlIaUUpRoFUsyaBZHQKiSi2JBPbh1fZQoaAZoCWgPQwgpXfqXpGIWwJSGlFKUaBVLMmgWR0CokfFnRLK3dX2UKGgGaAloD0MIyaoINxl1EsCUhpRSlGgVSzJoFkdAqJGV7ngYQHV9lChoBmgJaA9DCPrwLEFG4BrAlIaUUpRoFUsyaBZHQKiUebpeNT91fZQoaAZoCWgPQwjKTj+oiwQewJSGlFKUaBVLMmgWR0Cok80PH1e0dX2UKGgGaAloD0MIGw5LAz/KFsCUhpRSlGgVSzJoFkdAqJMx/kNnXnV9lChoBmgJaA9DCMR8eQH2ARrAlIaUUpRoFUsyaBZHQKiS1v9cbBJ1fZQoaAZoCWgPQwjKN9vcmM4iwJSGlFKUaBVLMmgWR0ColZqGDcubdX2UKGgGaAloD0MIc9U8R+SbEsCUhpRSlGgVSzJoFkdAqJTtVinYQXV9lChoBmgJaA9DCPD8ogT9BRPAlIaUUpRoFUsyaBZHQKiUUs+V1Ol1fZQoaAZoCWgPQwisxDwrafUpwJSGlFKUaBVLMmgWR0Cok/deIEbHdX2UKGgGaAloD0MIMlhxqrXIIcCUhpRSlGgVSzJoFkdAqJa59NN8E3V9lChoBmgJaA9DCJCF6BA4UhDAlIaUUpRoFUsyaBZHQKiWDHU+cH51fZQoaAZoCWgPQwjXoZqSrHMbwJSGlFKUaBVLMmgWR0ColXGbCrLhdX2UKGgGaAloD0MI+z4cJETJJsCUhpRSlGgVSzJoFkdAqJUWTJQtSXV9lChoBmgJaA9DCLywNVt5SRbAlIaUUpRoFUsyaBZHQKiXy6UaAFx1fZQoaAZoCWgPQwg33bJD/JMXwJSGlFKUaBVLMmgWR0Colx4XGff5dX2UKGgGaAloD0MIVOHP8GZ9GMCUhpRSlGgVSzJoFkdAqJaC9RJmNHV9lChoBmgJaA9DCFUzaykg7SzAlIaUUpRoFUsyaBZHQKiWJ8HfMwF1fZQoaAZoCWgPQwihZkgVxcsEwJSGlFKUaBVLMmgWR0ComL+mFajfdX2UKGgGaAloD0MIjfD2IASEGMCUhpRSlGgVSzJoFkdAqJgRp35eq3V9lChoBmgJaA9DCBK+9zdoTwTAlIaUUpRoFUsyaBZHQKiXdoysS011fZQoaAZoCWgPQwgMQKN06Q8YwJSGlFKUaBVLMmgWR0Colxsenyd4dX2UKGgGaAloD0MI38DkRpH1JsCUhpRSlGgVSzJoFkdAqJnWIfr8i3V9lChoBmgJaA9DCALU1LK1ThrAlIaUUpRoFUsyaBZHQKiZKC9RJmN1fZQoaAZoCWgPQwhwtOOG300awJSGlFKUaBVLMmgWR0ComI1Aqur7dX2UKGgGaAloD0MIiqw1lNqrGMCUhpRSlGgVSzJoFkdAqJgz6i0v5HV9lChoBmgJaA9DCFtc4zPZbyrAlIaUUpRoFUsyaBZHQKia/kJa7mN1fZQoaAZoCWgPQwhRM6SK4i0iwJSGlFKUaBVLMmgWR0ComlBLGrCFdX2UKGgGaAloD0MICks8oGxKIcCUhpRSlGgVSzJoFkdAqJm2NYKYzHV9lChoBmgJaA9DCGySH/ErzinAlIaUUpRoFUsyaBZHQKiZWtITXat1fZQoaAZoCWgPQwhfDVAaagQcwJSGlFKUaBVLMmgWR0ConB0rbxmTdX2UKGgGaAloD0MIsRTJVwJ5FsCUhpRSlGgVSzJoFkdAqJtvObAk9nV9lChoBmgJaA9DCHx/g/bqayTAlIaUUpRoFUsyaBZHQKia1CHARCh1fZQoaAZoCWgPQwh9yjFZ3H8fwJSGlFKUaBVLMmgWR0Comnmr0aqCdX2UKGgGaAloD0MI8bkT7L+OE8CUhpRSlGgVSzJoFkdAqJ0qQq7ROXV9lChoBmgJaA9DCIDXZ876hB/AlIaUUpRoFUsyaBZHQKicfF85S3t1fZQoaAZoCWgPQwj/W8mOjZAawJSGlFKUaBVLMmgWR0Com+GReTmodX2UKGgGaAloD0MI4XzqWKWcI8CUhpRSlGgVSzJoFkdAqJuHUz9CNXV9lChoBmgJaA9DCEBPAwZJvwXAlIaUUpRoFUsyaBZHQKiemLHdXT51fZQoaAZoCWgPQwhWgO82b2wYwJSGlFKUaBVLMmgWR0ConesrmQr+dX2UKGgGaAloD0MIoRSt3AvMFMCUhpRSlGgVSzJoFkdAqJ1QcHWz4XV9lChoBmgJaA9DCASOBBpsUijAlIaUUpRoFUsyaBZHQKic9Z9uxbB1fZQoaAZoCWgPQwgRyCWOPEgmwJSGlFKUaBVLMmgWR0CooEVMVUModX2UKGgGaAloD0MIw6BMo8mFFsCUhpRSlGgVSzJoFkdAqJ+ZsVLzw3V9lChoBmgJaA9DCIbGE0GcxxfAlIaUUpRoFUsyaBZHQKie/47A+IN1fZQoaAZoCWgPQwi1wYno15YUwJSGlFKUaBVLMmgWR0ConqSAxzq9dX2UKGgGaAloD0MITrfsEP8AGsCUhpRSlGgVSzJoFkdAqKI2rjo6jnV9lChoBmgJaA9DCPcCs0KRpizAlIaUUpRoFUsyaBZHQKihic1fmcR1fZQoaAZoCWgPQwj5vOKpR1oXwJSGlFKUaBVLMmgWR0CooO/WUbDNdX2UKGgGaAloD0MIyo0iaw2lDsCUhpRSlGgVSzJoFkdAqKCU4DLbH3V9lChoBmgJaA9DCOBJC5dVACDAlIaUUpRoFUsyaBZHQKij9sTFl051fZQoaAZoCWgPQwjBjClY49wlwJSGlFKUaBVLMmgWR0Coo0ltbcGkdX2UKGgGaAloD0MI6Pf9mxdnFsCUhpRSlGgVSzJoFkdAqKKwBYFJQXV9lChoBmgJaA9DCE7tDFNbsiXAlIaUUpRoFUsyaBZHQKiiVanJkoZ1fZQoaAZoCWgPQwgOEw1S8EQjwJSGlFKUaBVLMmgWR0CopYdQO4G2dX2UKGgGaAloD0MIqkca3NZuJMCUhpRSlGgVSzJoFkdAqKTaifxtpHV9lChoBmgJaA9DCHui68IPPijAlIaUUpRoFUsyaBZHQKikQIAwPAh1fZQoaAZoCWgPQwiVtyOcFjwfwJSGlFKUaBVLMmgWR0Coo+WnCO3ldX2UKGgGaAloD0MIvf25aMjYF8CUhpRSlGgVSzJoFkdAqKdU189fTnV9lChoBmgJaA9DCNOf/UgR2RfAlIaUUpRoFUsyaBZHQKimp8DSw4d1fZQoaAZoCWgPQwj0pbc/F10pwJSGlFKUaBVLMmgWR0Copg7oB7u2dX2UKGgGaAloD0MIAU9auKzyF8CUhpRSlGgVSzJoFkdAqKW1vQ4S6HV9lChoBmgJaA9DCIGzlCwnoSjAlIaUUpRoFUsyaBZHQKioeDkELYx1fZQoaAZoCWgPQwiyD7IsmCgZwJSGlFKUaBVLMmgWR0Cop8pi7TUidX2UKGgGaAloD0MICr3+JD4HIMCUhpRSlGgVSzJoFkdAqKcvlKbrknV9lChoBmgJaA9DCEDCMGDJ1Q7AlIaUUpRoFUsyaBZHQKim1G8274B1fZQoaAZoCWgPQwh+xRoucl8bwJSGlFKUaBVLMmgWR0CoqWmbLEDRdX2UKGgGaAloD0MIuLBuvDuiGsCUhpRSlGgVSzJoFkdAqKi72xptanV9lChoBmgJaA9DCN17uOS4cxzAlIaUUpRoFUsyaBZHQKioILofSx91fZQoaAZoCWgPQwi1wB4TKV0XwJSGlFKUaBVLMmgWR0Cop8VJUYKqdX2UKGgGaAloD0MIrOXOTDD8GMCUhpRSlGgVSzJoFkdAqKqECcPOIXV9lChoBmgJaA9DCAMjL2tiMRHAlIaUUpRoFUsyaBZHQKip1gkTpPh1fZQoaAZoCWgPQwjcErngDI4XwJSGlFKUaBVLMmgWR0CoqTrk8zRAdX2UKGgGaAloD0MIrORjd4EqKcCUhpRSlGgVSzJoFkdAqKjfgpBomHV9lChoBmgJaA9DCBh5WRMLnBXAlIaUUpRoFUsyaBZHQKirkV/tpmF1fZQoaAZoCWgPQwjW5ZSAmHQUwJSGlFKUaBVLMmgWR0CoquRBeHBUdX2UKGgGaAloD0MIRIZVvJFBJ8CUhpRSlGgVSzJoFkdAqKpJVAAyVXV9lChoBmgJaA9DCJfK2xFO6wPAlIaUUpRoFUsyaBZHQKip7gAp8Wt1fZQoaAZoCWgPQwiN0TqqmsAWwJSGlFKUaBVLMmgWR0CorKL/sE7odX2UKGgGaAloD0MIpMLYQpDDJMCUhpRSlGgVSzJoFkdAqKv1V7x/eHV9lChoBmgJaA9DCM+8HHbf8RTAlIaUUpRoFUsyaBZHQKirWxNZeRh1fZQoaAZoCWgPQwgm4q3zb+cTwJSGlFKUaBVLMmgWR0Coqv+ZgG8mdX2UKGgGaAloD0MI9nmM8sxrLMCUhpRSlGgVSzJoFkdAqK2ys6q82HV9lChoBmgJaA9DCJoklpS7zw/AlIaUUpRoFUsyaBZHQKitBMnJDE51fZQoaAZoCWgPQwjQYb68ANsawJSGlFKUaBVLMmgWR0CorGqgAZKndX2UKGgGaAloD0MIiGcJMgJqEsCUhpRSlGgVSzJoFkdAqKwPJtBOYnV9lChoBmgJaA9DCGABTBk4MB3AlIaUUpRoFUsyaBZHQKiuxxXGOuJ1fZQoaAZoCWgPQwjUuDe/YfIdwJSGlFKUaBVLMmgWR0CorhoGhVU/dX2UKGgGaAloD0MIlWOyuP84FsCUhpRSlGgVSzJoFkdAqK1+4/eLvXV9lChoBmgJaA9DCG2MnfASvBDAlIaUUpRoFUsyaBZHQKitI1Muez51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9368d9bebbcc83055af194a4bb98570d8088b3ef1329f83ce281cf506b448ab8
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f89e47ff358024309d0608aca0b09a5491bfbe460546199b76484e6f3ff78ced
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9792e3b790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9792e99510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678285176363967108, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+2dRjPvJWFL07Kkw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAawbXPwt1QT9RHO0+slTLv1ybm77g7VS/4Qi/PswyW76wgVc/8xCvv2SfpL+D/qo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrnZ1GM+8lYUvTsqTD6THTU9sHjbu26RkrmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]\n [ 0.22249164 -0.03621573 0.19937985]]", "desired_goal": "[[ 1.6798834 0.7556922 0.46310666]\n [-1.5885222 -0.30391967 -0.8317547 ]\n [ 0.37311462 -0.21406096 0.8418226 ]\n [-1.3677047 -1.2861142 1.3358921 ]]", "observation": "[[ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]\n [ 0.22249164 -0.03621573 0.19937985 0.04421766 -0.00669774 -0.00027956]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2sMEPhS4nTuW4AI+uLoTPtADDz4XbJc+MCC/PaSZLrl4gF0+HpWYPRWTVzyrB3c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.2965336e-01 4.8132036e-03 1.2780985e-01]\n [ 1.4426696e-01 1.3966298e-01 2.9574654e-01]\n [ 9.3323112e-02 -1.6651169e-04 2.1631038e-01]\n [ 7.4503168e-02 1.3157626e-02 1.5077512e-02]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPrMkQE1lL8CUhpRSlIwBbJRLMowBdJRHQKiQxNW2gFp1fZQoaAZoCWgPQwg9Sbpm8uUjwJSGlFKUaBVLMmgWR0CokBa2nbZfdX2UKGgGaAloD0MIXcDLDBtVGsCUhpRSlGgVSzJoFkdAqI98UypJgHV9lChoBmgJaA9DCEKUL2ghkSfAlIaUUpRoFUsyaBZHQKiPINWEK3N1fZQoaAZoCWgPQwhtH/KWq/8VwJSGlFKUaBVLMmgWR0CokgRh2GIsdX2UKGgGaAloD0MIGHjuPVwSHsCUhpRSlGgVSzJoFkdAqJFW74BV/HV9lChoBmgJaA9DCCNKe4MvXBvAlIaUUpRoFUsyaBZHQKiQvNC7btZ1fZQoaAZoCWgPQwi7ufjbnoAZwJSGlFKUaBVLMmgWR0CokGEsrd30dX2UKGgGaAloD0MIcJUnEHaKDsCUhpRSlGgVSzJoFkdAqJM5X2dupHV9lChoBmgJaA9DCDp0et6NNRPAlIaUUpRoFUsyaBZHQKiSi2JBPbh1fZQoaAZoCWgPQwgpXfqXpGIWwJSGlFKUaBVLMmgWR0CokfFnRLK3dX2UKGgGaAloD0MIyaoINxl1EsCUhpRSlGgVSzJoFkdAqJGV7ngYQHV9lChoBmgJaA9DCPrwLEFG4BrAlIaUUpRoFUsyaBZHQKiUebpeNT91fZQoaAZoCWgPQwjKTj+oiwQewJSGlFKUaBVLMmgWR0Cok80PH1e0dX2UKGgGaAloD0MIGw5LAz/KFsCUhpRSlGgVSzJoFkdAqJMx/kNnXnV9lChoBmgJaA9DCMR8eQH2ARrAlIaUUpRoFUsyaBZHQKiS1v9cbBJ1fZQoaAZoCWgPQwjKN9vcmM4iwJSGlFKUaBVLMmgWR0ColZqGDcubdX2UKGgGaAloD0MIc9U8R+SbEsCUhpRSlGgVSzJoFkdAqJTtVinYQXV9lChoBmgJaA9DCPD8ogT9BRPAlIaUUpRoFUsyaBZHQKiUUs+V1Ol1fZQoaAZoCWgPQwisxDwrafUpwJSGlFKUaBVLMmgWR0Cok/deIEbHdX2UKGgGaAloD0MIMlhxqrXIIcCUhpRSlGgVSzJoFkdAqJa59NN8E3V9lChoBmgJaA9DCJCF6BA4UhDAlIaUUpRoFUsyaBZHQKiWDHU+cH51fZQoaAZoCWgPQwjXoZqSrHMbwJSGlFKUaBVLMmgWR0ColXGbCrLhdX2UKGgGaAloD0MI+z4cJETJJsCUhpRSlGgVSzJoFkdAqJUWTJQtSXV9lChoBmgJaA9DCLywNVt5SRbAlIaUUpRoFUsyaBZHQKiXy6UaAFx1fZQoaAZoCWgPQwg33bJD/JMXwJSGlFKUaBVLMmgWR0Colx4XGff5dX2UKGgGaAloD0MIVOHP8GZ9GMCUhpRSlGgVSzJoFkdAqJaC9RJmNHV9lChoBmgJaA9DCFUzaykg7SzAlIaUUpRoFUsyaBZHQKiWJ8HfMwF1fZQoaAZoCWgPQwihZkgVxcsEwJSGlFKUaBVLMmgWR0ComL+mFajfdX2UKGgGaAloD0MIjfD2IASEGMCUhpRSlGgVSzJoFkdAqJgRp35eq3V9lChoBmgJaA9DCBK+9zdoTwTAlIaUUpRoFUsyaBZHQKiXdoysS011fZQoaAZoCWgPQwgMQKN06Q8YwJSGlFKUaBVLMmgWR0Colxsenyd4dX2UKGgGaAloD0MI38DkRpH1JsCUhpRSlGgVSzJoFkdAqJnWIfr8i3V9lChoBmgJaA9DCALU1LK1ThrAlIaUUpRoFUsyaBZHQKiZKC9RJmN1fZQoaAZoCWgPQwhwtOOG300awJSGlFKUaBVLMmgWR0ComI1Aqur7dX2UKGgGaAloD0MIiqw1lNqrGMCUhpRSlGgVSzJoFkdAqJgz6i0v5HV9lChoBmgJaA9DCFtc4zPZbyrAlIaUUpRoFUsyaBZHQKia/kJa7mN1fZQoaAZoCWgPQwhRM6SK4i0iwJSGlFKUaBVLMmgWR0ComlBLGrCFdX2UKGgGaAloD0MICks8oGxKIcCUhpRSlGgVSzJoFkdAqJm2NYKYzHV9lChoBmgJaA9DCGySH/ErzinAlIaUUpRoFUsyaBZHQKiZWtITXat1fZQoaAZoCWgPQwhfDVAaagQcwJSGlFKUaBVLMmgWR0ConB0rbxmTdX2UKGgGaAloD0MIsRTJVwJ5FsCUhpRSlGgVSzJoFkdAqJtvObAk9nV9lChoBmgJaA9DCHx/g/bqayTAlIaUUpRoFUsyaBZHQKia1CHARCh1fZQoaAZoCWgPQwh9yjFZ3H8fwJSGlFKUaBVLMmgWR0Comnmr0aqCdX2UKGgGaAloD0MI8bkT7L+OE8CUhpRSlGgVSzJoFkdAqJ0qQq7ROXV9lChoBmgJaA9DCIDXZ876hB/AlIaUUpRoFUsyaBZHQKicfF85S3t1fZQoaAZoCWgPQwj/W8mOjZAawJSGlFKUaBVLMmgWR0Com+GReTmodX2UKGgGaAloD0MI4XzqWKWcI8CUhpRSlGgVSzJoFkdAqJuHUz9CNXV9lChoBmgJaA9DCEBPAwZJvwXAlIaUUpRoFUsyaBZHQKiemLHdXT51fZQoaAZoCWgPQwhWgO82b2wYwJSGlFKUaBVLMmgWR0ConesrmQr+dX2UKGgGaAloD0MIoRSt3AvMFMCUhpRSlGgVSzJoFkdAqJ1QcHWz4XV9lChoBmgJaA9DCASOBBpsUijAlIaUUpRoFUsyaBZHQKic9Z9uxbB1fZQoaAZoCWgPQwgRyCWOPEgmwJSGlFKUaBVLMmgWR0CooEVMVUModX2UKGgGaAloD0MIw6BMo8mFFsCUhpRSlGgVSzJoFkdAqJ+ZsVLzw3V9lChoBmgJaA9DCIbGE0GcxxfAlIaUUpRoFUsyaBZHQKie/47A+IN1fZQoaAZoCWgPQwi1wYno15YUwJSGlFKUaBVLMmgWR0ConqSAxzq9dX2UKGgGaAloD0MITrfsEP8AGsCUhpRSlGgVSzJoFkdAqKI2rjo6jnV9lChoBmgJaA9DCPcCs0KRpizAlIaUUpRoFUsyaBZHQKihic1fmcR1fZQoaAZoCWgPQwj5vOKpR1oXwJSGlFKUaBVLMmgWR0CooO/WUbDNdX2UKGgGaAloD0MIyo0iaw2lDsCUhpRSlGgVSzJoFkdAqKCU4DLbH3V9lChoBmgJaA9DCOBJC5dVACDAlIaUUpRoFUsyaBZHQKij9sTFl051fZQoaAZoCWgPQwjBjClY49wlwJSGlFKUaBVLMmgWR0Coo0ltbcGkdX2UKGgGaAloD0MI6Pf9mxdnFsCUhpRSlGgVSzJoFkdAqKKwBYFJQXV9lChoBmgJaA9DCE7tDFNbsiXAlIaUUpRoFUsyaBZHQKiiVanJkoZ1fZQoaAZoCWgPQwgOEw1S8EQjwJSGlFKUaBVLMmgWR0CopYdQO4G2dX2UKGgGaAloD0MIqkca3NZuJMCUhpRSlGgVSzJoFkdAqKTaifxtpHV9lChoBmgJaA9DCHui68IPPijAlIaUUpRoFUsyaBZHQKikQIAwPAh1fZQoaAZoCWgPQwiVtyOcFjwfwJSGlFKUaBVLMmgWR0Coo+WnCO3ldX2UKGgGaAloD0MIvf25aMjYF8CUhpRSlGgVSzJoFkdAqKdU189fTnV9lChoBmgJaA9DCNOf/UgR2RfAlIaUUpRoFUsyaBZHQKimp8DSw4d1fZQoaAZoCWgPQwj0pbc/F10pwJSGlFKUaBVLMmgWR0Copg7oB7u2dX2UKGgGaAloD0MIAU9auKzyF8CUhpRSlGgVSzJoFkdAqKW1vQ4S6HV9lChoBmgJaA9DCIGzlCwnoSjAlIaUUpRoFUsyaBZHQKioeDkELYx1fZQoaAZoCWgPQwiyD7IsmCgZwJSGlFKUaBVLMmgWR0Cop8pi7TUidX2UKGgGaAloD0MICr3+JD4HIMCUhpRSlGgVSzJoFkdAqKcvlKbrknV9lChoBmgJaA9DCEDCMGDJ1Q7AlIaUUpRoFUsyaBZHQKim1G8274B1fZQoaAZoCWgPQwh+xRoucl8bwJSGlFKUaBVLMmgWR0CoqWmbLEDRdX2UKGgGaAloD0MIuLBuvDuiGsCUhpRSlGgVSzJoFkdAqKi72xptanV9lChoBmgJaA9DCN17uOS4cxzAlIaUUpRoFUsyaBZHQKioILofSx91fZQoaAZoCWgPQwi1wB4TKV0XwJSGlFKUaBVLMmgWR0Cop8VJUYKqdX2UKGgGaAloD0MIrOXOTDD8GMCUhpRSlGgVSzJoFkdAqKqECcPOIXV9lChoBmgJaA9DCAMjL2tiMRHAlIaUUpRoFUsyaBZHQKip1gkTpPh1fZQoaAZoCWgPQwjcErngDI4XwJSGlFKUaBVLMmgWR0CoqTrk8zRAdX2UKGgGaAloD0MIrORjd4EqKcCUhpRSlGgVSzJoFkdAqKjfgpBomHV9lChoBmgJaA9DCBh5WRMLnBXAlIaUUpRoFUsyaBZHQKirkV/tpmF1fZQoaAZoCWgPQwjW5ZSAmHQUwJSGlFKUaBVLMmgWR0CoquRBeHBUdX2UKGgGaAloD0MIRIZVvJFBJ8CUhpRSlGgVSzJoFkdAqKpJVAAyVXV9lChoBmgJaA9DCJfK2xFO6wPAlIaUUpRoFUsyaBZHQKip7gAp8Wt1fZQoaAZoCWgPQwiN0TqqmsAWwJSGlFKUaBVLMmgWR0CorKL/sE7odX2UKGgGaAloD0MIpMLYQpDDJMCUhpRSlGgVSzJoFkdAqKv1V7x/eHV9lChoBmgJaA9DCM+8HHbf8RTAlIaUUpRoFUsyaBZHQKirWxNZeRh1fZQoaAZoCWgPQwgm4q3zb+cTwJSGlFKUaBVLMmgWR0Coqv+ZgG8mdX2UKGgGaAloD0MI9nmM8sxrLMCUhpRSlGgVSzJoFkdAqK2ys6q82HV9lChoBmgJaA9DCJoklpS7zw/AlIaUUpRoFUsyaBZHQKitBMnJDE51fZQoaAZoCWgPQwjQYb68ANsawJSGlFKUaBVLMmgWR0CorGqgAZKndX2UKGgGaAloD0MIiGcJMgJqEsCUhpRSlGgVSzJoFkdAqKwPJtBOYnV9lChoBmgJaA9DCGABTBk4MB3AlIaUUpRoFUsyaBZHQKiuxxXGOuJ1fZQoaAZoCWgPQwjUuDe/YfIdwJSGlFKUaBVLMmgWR0CorhoGhVU/dX2UKGgGaAloD0MIlWOyuP84FsCUhpRSlGgVSzJoFkdAqK1+4/eLvXV9lChoBmgJaA9DCG2MnfASvBDAlIaUUpRoFUsyaBZHQKitI1Muez51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (763 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -6.709917521104217, "std_reward": 1.957025428065732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T15:15:18.693022"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caec65f5237ebf48c7ab418ff4b6dc0124c13790d909211fdc45b0c382268a13
3
+ size 3212