Kittitouch commited on
Commit
3cfd05b
·
1 Parent(s): 35d9564

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1884.30 +/- 67.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:450b10fb9e6c38f39da757bcb88f261874817177d7da5d765fe15aa26cfd8c7a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9792e3b040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9792e3b0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9792e3b160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9792e3b1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9792e3b280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9792e3b310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9792e3b3a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9792e3b430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9792e3b4c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9792e3b550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9792e3b5e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9792e3b670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9792e99270>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678281102566994814,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFVyC75r0G0/vuqpPhUGhT+qn2I/5PguPy8TKz4wwwO9P/VePgtyGMDhIGS/rbL4Pq8Cez6KtFS/4jvzPQzQ/z/fVpU/+xaRv09Z7j2Ow02/jHDaPh1nkMA0FJY+Ey9aP3ElfL+N1w4/2dvBv6EXfz8DUba+xTWaPkFtCz99Bo8+6ZuWvieyJD8Ii9e+0HqgvrDoLj+CqEm8lqtrv+Khyrv/Rsq+ZQ1bP2FGNj9KfgI/qTAZP9nw0T/jJtq9MUDfv15tE7/46ts9Hk4aPwzpmD5xJXy/jdcOP74HKT+hF38/D7IDvVSCvD4Xhwk/CqPiPjhH675AfNM+ONT3vhI3Dr+rTDI/mfb8POE1Rj6kLg8+jqvrvNXloL/whm8/SVCzvm/moz76WFi/hQsUvskzyD7zGPy+f+4yP6G7Iz9PBoS/cSV8v43XDj++Byk/mXSAv1GKNL3Sfmg/I0OwPmjORT9FFqI9cICEP1MxAD+pywe/lYnjvYNZYT96j2u/IYJ+PAuCWj5cJmg/RPs0Pl/Hjj8yNYE/K/55vtsqtT6X86w9rut2vusAkr8I2H0+TETmPnElfL+N1w4/vgcpP6EXfz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZkA81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD6AIvgAAAACRHgHAAAAAAO6TAz0AAAAA2G3mPwAAAACv6e+9AAAAAHLH/j8AAAAAQ2LiPAAAAABYXey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp4qOtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFRcWz0AAAAAZlzvvwAAAABWTuq9AAAAADGS5j8AAAAAnzIIvgAAAAD3L9k/AAAAAMMoAb4AAAAA2kz0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFysszYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/udM9AAAAAPjy3L8AAAAAJOTxPQAAAABnTvE/AAAAAKruzj0AAAAAOgzrPwAAAAD+u+i9AAAAAN7m+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAucCQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoZEIvgAAAADoG/G/AAAAAN8Z0b0AAAAAjSL4PwAAAADhm8e8AAAAAEqZ4z8AAAAAP92+vQAAAAAZKt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmnynQ6ZICMAWyUTegDjAF0lEdAquo0bedkKHV9lChoBkdAn0wLThHby2gHTegDaAhHQKrs+h8pkPN1fZQoaAZHQKBt/RYRuj1oB03oA2gIR0Cq82/642CNdX2UKGgGR0Cet6UY8+zMaAdN6ANoCEdAqvU7BbfP5nV9lChoBkdAnQwVtsN2DGgHTegDaAhHQKr5s7ZnL7p1fZQoaAZHQJtw1v99+gFoB03oA2gIR0Cq/KTVlPJrdX2UKGgGR0CeJxCWNWELaAdN6ANoCEdAqwIxzRx95XV9lChoBkdAnAqX6l+Ey2gHTegDaAhHQKsDYlZX+2p1fZQoaAZHQJptnPGACnxoB03oA2gIR0CrBkNWEK3NdX2UKGgGR0CbtYKfFrEcaAdN6ANoCEdAqwjxlUZNwnV9lChoBkdAmFWs5XEIgWgHTegDaAhHQKsOjJDE3sJ1fZQoaAZHQJmKAojOcDtoB03oA2gIR0CrED7QLNOedX2UKGgGR0CXZRg88s+WaAdN6ANoCEdAqxSjZvkzXXV9lChoBkdAly1AGnn+ymgHTegDaAhHQKsY0Idlum91fZQoaAZHQKCPKZfD1oRoB03oA2gIR0CrHin3L3bmdX2UKGgGR0CcPk6d1+y7aAdN6ANoCEdAqx9bZ+QU6HV9lChoBkdAnoJSU5dWyWgHTegDaAhHQKsiQN8VpK11fZQoaAZHQJ3aYsK9f1JoB03oA2gIR0CrJP75/LDAdX2UKGgGR0CcSPrEtNBXaAdN6ANoCEdAqypxRGc4HXV9lChoBkdAly8gF9roGWgHTegDaAhHQKsrpoXbdrR1fZQoaAZHQJXWWl1r6+FoB03oA2gIR0CrL3dyLhrFdX2UKGgGR0CUunFHavicaAdN6ANoCEdAqzOKfapPynV9lChoBkdAn3wNrO7g9GgHTegDaAhHQKs6ZZ39rGl1fZQoaAZHQJ9DMglnh89oB03oA2gIR0CrO6YvnKW+dX2UKGgGR0CeWHoScslLaAdN6ANoCEdAqz6803wTd3V9lChoBkdAoInbl1bJOmgHTegDaAhHQKtBf/6O5rh1fZQoaAZHQJKTe8+RoytoB03oA2gIR0CrRxW2Xsw+dX2UKGgGR0CePWV1wHZ9aAdN6ANoCEdAq0hOKhtcfXV9lChoBkdAnk2wEpy6tmgHTegDaAhHQKtLQ3kxREZ1fZQoaAZHQJ5NRGWldkdoB03oA2gIR0CrTygMDwH8dX2UKGgGR0CgvyBguyu7aAdN6ANoCEdAq1ciUFB6bHV9lChoBkdAoHL8GA08/2gHTegDaAhHQKtYVKA8Swp1fZQoaAZHQJ+UStOmBOJoB03oA2gIR0CrW05jH4oJdX2UKGgGR0CgI8aZpi7TaAdN6ANoCEdAq14qeZof0XV9lChoBkdAoNNB8neBQWgHTegDaAhHQKtjuDdxhlV1fZQoaAZHQJ9H5cTrVvxoB03oA2gIR0CrZPMtK7I1dX2UKGgGR0CfOfWZJCjUaAdN6ANoCEdAq2f1Yr8R+XV9lChoBkdAnYh3+uNgjWgHTegDaAhHQKtrBnJ1aGJ1fZQoaAZHQKGbSwpON5toB03oA2gIR0CrcyL4nF5wdX2UKGgGR0CgWIhddE9daAdN6ANoCEdAq3TikhzNlnV9lChoBkdAoPjWg13t8mgHTegDaAhHQKt30+V1Oj91fZQoaAZHQJ+7Tsu3+ddoB03oA2gIR0Creqt/WlMzdX2UKGgGR0Cen9uUliSaaAdN6ANoCEdAq4AstXgccXV9lChoBkdAoQQVepn6EmgHTegDaAhHQKuBYmsvIwN1fZQoaAZHQKF+HPNVzZJoB03oA2gIR0CrhFvCEYfodX2UKGgGR0CgPwmecx0uaAdN6ANoCEdAq4cdShrWRXV9lChoBkdAoJrhX2dupGgHTegDaAhHQKuOaQmNR3x1fZQoaAZHQKAvh+ocaOxoB03oA2gIR0CrkFIKlYU4dX2UKGgGR0CgrGA/C66KaAdN6ANoCEdAq5Q9QAMlTnV9lChoBkdAoHv1gMMI/2gHTegDaAhHQKuXCWLP2PF1fZQoaAZHQKFSl/jKgZloB03oA2gIR0CrnIZmAbyZdX2UKGgGR0CcqPF3pwCKaAdN6ANoCEdAq521+d9Uj3V9lChoBkdAoMtDEgntwGgHTegDaAhHQKugsDUVi4J1fZQoaAZHQJ8A3WSU1Q9oB03oA2gIR0Cro2JsO5J9dX2UKGgGR0CgL6SeiBXkaAdN6ANoCEdAq6l/pIMBqHV9lChoBkdAoGVU0k4WDmgHTegDaAhHQKurRIy0rsl1fZQoaAZHQKAMFZCfHxVoB03oA2gIR0Crr9cfms/6dX2UKGgGR0Cd1Sn003wTaAdN6ANoCEdAq7NLoEB8yHV9lChoBkdAneW2mtQsPWgHTegDaAhHQKu489mHxjJ1fZQoaAZHQJxsMnssxwhoB03oA2gIR0CruiyVGCqZdX2UKGgGR0Cef6DmKZUlaAdN6ANoCEdAq70evZAY53V9lChoBkdAoGQ7uF6Av2gHTegDaAhHQKu/z28qWkd1fZQoaAZHQI5JXfAKv3doB03oA2gIR0CrxVk7nxJ/dX2UKGgGR0CZlMRv3rUtaAdN6ANoCEdAq8bsC9ytFXV9lChoBkdAhe5N6X0GvGgHTegDaAhHQKvLP/yXlbN1fZQoaAZHQJ892vNeMQ5oB03oA2gIR0Crz6WBz3h5dX2UKGgGR0CcqIB3Roh7aAdN6ANoCEdAq9VowZflZHV9lChoBkdAmwS/8MuvlmgHTegDaAhHQKvWqzt1IRR1fZQoaAZHQJpiB99c8kloB03oA2gIR0Cr2bMAeaKDdX2UKGgGR0CRbP0F8ohIaAdN6ANoCEdAq9x9lkH2RXV9lChoBkdAmDvyTpxFRmgHTegDaAhHQKvh/Fa0Qbx1fZQoaAZHQJr6MUO/cnFoB03oA2gIR0Cr4zfuTibVdX2UKGgGR0CYDnSpiqhlaAdN6ANoCEdAq+b75ftx/HV9lChoBkdAl+MHUtqYZ2gHTegDaAhHQKvrE4gA6uJ1fZQoaAZHQJhruZ+hGpdoB03oA2gIR0Cr8eOB19v1dX2UKGgGR0Cc7TPxx1gZaAdN6ANoCEdAq/Mn0Cih4HV9lChoBkdAmWD5XuE252gHTegDaAhHQKv2JtqpLmJ1fZQoaAZHQJdQjQTmGM5oB03oA2gIR0Cr+OmTTvy9dX2UKGgGR0Cdiwqy4Wk8aAdN6ANoCEdAq/6JLM9r43V9lChoBkdAmnkiQkona2gHTegDaAhHQKv/ywztTk11fZQoaAZHQJlVHG6wt8NoB03oA2gIR0CsAsdDIBBBdX2UKGgGR0Cc7Ac4YJmeaAdN6ANoCEdArAa+Fxn3+XV9lChoBkdAnrd0g8r7O2gHTegDaAhHQKwOe9vCMxZ1fZQoaAZHQJs8fwOOKfpoB03oA2gIR0CsD6pXIU8FdX2UKGgGR0CcOs8tPHktaAdN6ANoCEdArBKvsAvL5nV9lChoBkdAmvarAtWdVmgHTegDaAhHQKwVgSdOIqN1fZQoaAZHQJlKmwfQrtpoB03oA2gIR0CsGv0B4lhPdX2UKGgGR0CbMiiudPLxaAdN6ANoCEdArBwtu3trsXV9lChoBkdAmdNFENOM2mgHTegDaAhHQKwfJ5hz/6x1fZQoaAZHQJrEdGsmv4doB03oA2gIR0CsIiQCSzPbdX2UKGgGR0Cb40KXOW0JaAdN6ANoCEdArCpdBa9sanV9lChoBkdAnIL5NwiqyWgHTegDaAhHQKwsIexwAEN1fZQoaAZHQJs4rHBDXvpoB03oA2gIR0CsLxGR/3FldX2UKGgGR0Cal1YjjaPCaAdN6ANoCEdArDHLRc/t6XV9lChoBkdAnVLh4hUzbmgHTegDaAhHQKw3RW7voeR1fZQoaAZHQJ+ZE91U2k1oB03oA2gIR0CsOHa3qiXZdX2UKGgGR0CbZjWWQfZFaAdN6ANoCEdArDtwTqSowXV9lChoBkdAmvViAYpDu2gHTegDaAhHQKw+L8jzI3l1fZQoaAZHQJ5YiR4hUzdoB03oA2gIR0CsRT8C5mROdX2UKGgGR0CdB+MY/FBIaAdN6ANoCEdArEcpeu3c6HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c1582583472eae2d462ab981187656dca18acd4144fb3b97dcef6c2b36a9ff3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8baf8effa71a7f3a91d19b8c518aa101c90ce9cf0d7a343294c8336dbd1c3362
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9792e3b040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9792e3b0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9792e3b160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9792e3b1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f9792e3b280>", "forward": "<function ActorCriticPolicy.forward at 0x7f9792e3b310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9792e3b3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9792e3b430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9792e3b4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9792e3b550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9792e3b5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9792e3b670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9792e99270>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678281102566994814, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFVyC75r0G0/vuqpPhUGhT+qn2I/5PguPy8TKz4wwwO9P/VePgtyGMDhIGS/rbL4Pq8Cez6KtFS/4jvzPQzQ/z/fVpU/+xaRv09Z7j2Ow02/jHDaPh1nkMA0FJY+Ey9aP3ElfL+N1w4/2dvBv6EXfz8DUba+xTWaPkFtCz99Bo8+6ZuWvieyJD8Ii9e+0HqgvrDoLj+CqEm8lqtrv+Khyrv/Rsq+ZQ1bP2FGNj9KfgI/qTAZP9nw0T/jJtq9MUDfv15tE7/46ts9Hk4aPwzpmD5xJXy/jdcOP74HKT+hF38/D7IDvVSCvD4Xhwk/CqPiPjhH675AfNM+ONT3vhI3Dr+rTDI/mfb8POE1Rj6kLg8+jqvrvNXloL/whm8/SVCzvm/moz76WFi/hQsUvskzyD7zGPy+f+4yP6G7Iz9PBoS/cSV8v43XDj++Byk/mXSAv1GKNL3Sfmg/I0OwPmjORT9FFqI9cICEP1MxAD+pywe/lYnjvYNZYT96j2u/IYJ+PAuCWj5cJmg/RPs0Pl/Hjj8yNYE/K/55vtsqtT6X86w9rut2vusAkr8I2H0+TETmPnElfL+N1w4/vgcpP6EXfz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZkA81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD6AIvgAAAACRHgHAAAAAAO6TAz0AAAAA2G3mPwAAAACv6e+9AAAAAHLH/j8AAAAAQ2LiPAAAAABYXey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAp4qOtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFRcWz0AAAAAZlzvvwAAAABWTuq9AAAAADGS5j8AAAAAnzIIvgAAAAD3L9k/AAAAAMMoAb4AAAAA2kz0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFysszYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID/udM9AAAAAPjy3L8AAAAAJOTxPQAAAABnTvE/AAAAAKruzj0AAAAAOgzrPwAAAAD+u+i9AAAAAN7m+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAucCQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoZEIvgAAAADoG/G/AAAAAN8Z0b0AAAAAjSL4PwAAAADhm8e8AAAAAEqZ4z8AAAAAP92+vQAAAAAZKt2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmnynQ6ZICMAWyUTegDjAF0lEdAquo0bedkKHV9lChoBkdAn0wLThHby2gHTegDaAhHQKrs+h8pkPN1fZQoaAZHQKBt/RYRuj1oB03oA2gIR0Cq82/642CNdX2UKGgGR0Cet6UY8+zMaAdN6ANoCEdAqvU7BbfP5nV9lChoBkdAnQwVtsN2DGgHTegDaAhHQKr5s7ZnL7p1fZQoaAZHQJtw1v99+gFoB03oA2gIR0Cq/KTVlPJrdX2UKGgGR0CeJxCWNWELaAdN6ANoCEdAqwIxzRx95XV9lChoBkdAnAqX6l+Ey2gHTegDaAhHQKsDYlZX+2p1fZQoaAZHQJptnPGACnxoB03oA2gIR0CrBkNWEK3NdX2UKGgGR0CbtYKfFrEcaAdN6ANoCEdAqwjxlUZNwnV9lChoBkdAmFWs5XEIgWgHTegDaAhHQKsOjJDE3sJ1fZQoaAZHQJmKAojOcDtoB03oA2gIR0CrED7QLNOedX2UKGgGR0CXZRg88s+WaAdN6ANoCEdAqxSjZvkzXXV9lChoBkdAly1AGnn+ymgHTegDaAhHQKsY0Idlum91fZQoaAZHQKCPKZfD1oRoB03oA2gIR0CrHin3L3bmdX2UKGgGR0CcPk6d1+y7aAdN6ANoCEdAqx9bZ+QU6HV9lChoBkdAnoJSU5dWyWgHTegDaAhHQKsiQN8VpK11fZQoaAZHQJ3aYsK9f1JoB03oA2gIR0CrJP75/LDAdX2UKGgGR0CcSPrEtNBXaAdN6ANoCEdAqypxRGc4HXV9lChoBkdAly8gF9roGWgHTegDaAhHQKsrpoXbdrR1fZQoaAZHQJXWWl1r6+FoB03oA2gIR0CrL3dyLhrFdX2UKGgGR0CUunFHavicaAdN6ANoCEdAqzOKfapPynV9lChoBkdAn3wNrO7g9GgHTegDaAhHQKs6ZZ39rGl1fZQoaAZHQJ9DMglnh89oB03oA2gIR0CrO6YvnKW+dX2UKGgGR0CeWHoScslLaAdN6ANoCEdAqz6803wTd3V9lChoBkdAoInbl1bJOmgHTegDaAhHQKtBf/6O5rh1fZQoaAZHQJKTe8+RoytoB03oA2gIR0CrRxW2Xsw+dX2UKGgGR0CePWV1wHZ9aAdN6ANoCEdAq0hOKhtcfXV9lChoBkdAnk2wEpy6tmgHTegDaAhHQKtLQ3kxREZ1fZQoaAZHQJ5NRGWldkdoB03oA2gIR0CrTygMDwH8dX2UKGgGR0CgvyBguyu7aAdN6ANoCEdAq1ciUFB6bHV9lChoBkdAoHL8GA08/2gHTegDaAhHQKtYVKA8Swp1fZQoaAZHQJ+UStOmBOJoB03oA2gIR0CrW05jH4oJdX2UKGgGR0CgI8aZpi7TaAdN6ANoCEdAq14qeZof0XV9lChoBkdAoNNB8neBQWgHTegDaAhHQKtjuDdxhlV1fZQoaAZHQJ9H5cTrVvxoB03oA2gIR0CrZPMtK7I1dX2UKGgGR0CfOfWZJCjUaAdN6ANoCEdAq2f1Yr8R+XV9lChoBkdAnYh3+uNgjWgHTegDaAhHQKtrBnJ1aGJ1fZQoaAZHQKGbSwpON5toB03oA2gIR0CrcyL4nF5wdX2UKGgGR0CgWIhddE9daAdN6ANoCEdAq3TikhzNlnV9lChoBkdAoPjWg13t8mgHTegDaAhHQKt30+V1Oj91fZQoaAZHQJ+7Tsu3+ddoB03oA2gIR0Creqt/WlMzdX2UKGgGR0Cen9uUliSaaAdN6ANoCEdAq4AstXgccXV9lChoBkdAoQQVepn6EmgHTegDaAhHQKuBYmsvIwN1fZQoaAZHQKF+HPNVzZJoB03oA2gIR0CrhFvCEYfodX2UKGgGR0CgPwmecx0uaAdN6ANoCEdAq4cdShrWRXV9lChoBkdAoJrhX2dupGgHTegDaAhHQKuOaQmNR3x1fZQoaAZHQKAvh+ocaOxoB03oA2gIR0CrkFIKlYU4dX2UKGgGR0CgrGA/C66KaAdN6ANoCEdAq5Q9QAMlTnV9lChoBkdAoHv1gMMI/2gHTegDaAhHQKuXCWLP2PF1fZQoaAZHQKFSl/jKgZloB03oA2gIR0CrnIZmAbyZdX2UKGgGR0CcqPF3pwCKaAdN6ANoCEdAq521+d9Uj3V9lChoBkdAoMtDEgntwGgHTegDaAhHQKugsDUVi4J1fZQoaAZHQJ8A3WSU1Q9oB03oA2gIR0Cro2JsO5J9dX2UKGgGR0CgL6SeiBXkaAdN6ANoCEdAq6l/pIMBqHV9lChoBkdAoGVU0k4WDmgHTegDaAhHQKurRIy0rsl1fZQoaAZHQKAMFZCfHxVoB03oA2gIR0Crr9cfms/6dX2UKGgGR0Cd1Sn003wTaAdN6ANoCEdAq7NLoEB8yHV9lChoBkdAneW2mtQsPWgHTegDaAhHQKu489mHxjJ1fZQoaAZHQJxsMnssxwhoB03oA2gIR0CruiyVGCqZdX2UKGgGR0Cef6DmKZUlaAdN6ANoCEdAq70evZAY53V9lChoBkdAoGQ7uF6Av2gHTegDaAhHQKu/z28qWkd1fZQoaAZHQI5JXfAKv3doB03oA2gIR0CrxVk7nxJ/dX2UKGgGR0CZlMRv3rUtaAdN6ANoCEdAq8bsC9ytFXV9lChoBkdAhe5N6X0GvGgHTegDaAhHQKvLP/yXlbN1fZQoaAZHQJ892vNeMQ5oB03oA2gIR0Crz6WBz3h5dX2UKGgGR0CcqIB3Roh7aAdN6ANoCEdAq9VowZflZHV9lChoBkdAmwS/8MuvlmgHTegDaAhHQKvWqzt1IRR1fZQoaAZHQJpiB99c8kloB03oA2gIR0Cr2bMAeaKDdX2UKGgGR0CRbP0F8ohIaAdN6ANoCEdAq9x9lkH2RXV9lChoBkdAmDvyTpxFRmgHTegDaAhHQKvh/Fa0Qbx1fZQoaAZHQJr6MUO/cnFoB03oA2gIR0Cr4zfuTibVdX2UKGgGR0CYDnSpiqhlaAdN6ANoCEdAq+b75ftx/HV9lChoBkdAl+MHUtqYZ2gHTegDaAhHQKvrE4gA6uJ1fZQoaAZHQJhruZ+hGpdoB03oA2gIR0Cr8eOB19v1dX2UKGgGR0Cc7TPxx1gZaAdN6ANoCEdAq/Mn0Cih4HV9lChoBkdAmWD5XuE252gHTegDaAhHQKv2JtqpLmJ1fZQoaAZHQJdQjQTmGM5oB03oA2gIR0Cr+OmTTvy9dX2UKGgGR0Cdiwqy4Wk8aAdN6ANoCEdAq/6JLM9r43V9lChoBkdAmnkiQkona2gHTegDaAhHQKv/ywztTk11fZQoaAZHQJlVHG6wt8NoB03oA2gIR0CsAsdDIBBBdX2UKGgGR0Cc7Ac4YJmeaAdN6ANoCEdArAa+Fxn3+XV9lChoBkdAnrd0g8r7O2gHTegDaAhHQKwOe9vCMxZ1fZQoaAZHQJs8fwOOKfpoB03oA2gIR0CsD6pXIU8FdX2UKGgGR0CcOs8tPHktaAdN6ANoCEdArBKvsAvL5nV9lChoBkdAmvarAtWdVmgHTegDaAhHQKwVgSdOIqN1fZQoaAZHQJlKmwfQrtpoB03oA2gIR0CsGv0B4lhPdX2UKGgGR0CbMiiudPLxaAdN6ANoCEdArBwtu3trsXV9lChoBkdAmdNFENOM2mgHTegDaAhHQKwfJ5hz/6x1fZQoaAZHQJrEdGsmv4doB03oA2gIR0CsIiQCSzPbdX2UKGgGR0Cb40KXOW0JaAdN6ANoCEdArCpdBa9sanV9lChoBkdAnIL5NwiqyWgHTegDaAhHQKwsIexwAEN1fZQoaAZHQJs4rHBDXvpoB03oA2gIR0CsLxGR/3FldX2UKGgGR0Cal1YjjaPCaAdN6ANoCEdArDHLRc/t6XV9lChoBkdAnVLh4hUzbmgHTegDaAhHQKw3RW7voeR1fZQoaAZHQJ+ZE91U2k1oB03oA2gIR0CsOHa3qiXZdX2UKGgGR0CbZjWWQfZFaAdN6ANoCEdArDtwTqSowXV9lChoBkdAmvViAYpDu2gHTegDaAhHQKw+L8jzI3l1fZQoaAZHQJ5YiR4hUzdoB03oA2gIR0CsRT8C5mROdX2UKGgGR0CdB+MY/FBIaAdN6ANoCEdArEcpeu3c6HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b0989dbf28db34eb409c9839912a2b61bdfd8c33576304e0b096742c2bc52dd
3
+ size 1006340
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1884.298665724753, "std_reward": 67.439230877797, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T14:18:24.843916"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55ff6b2ef33dcdb35792a0c1c15393e927894257f4342ddd85af0b67a1ac78fc
3
+ size 2521