File size: 2,392 Bytes
a7880e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: KingLTD/pretrain_Law_model_vit5_version1
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pretrain_Law_model_vit5_version2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pretrain_Law_model_vit5_version2
This model is a fine-tuned version of [KingLTD/pretrain_Law_model_vit5_version1](https://huggingface.co/KingLTD/pretrain_Law_model_vit5_version1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1644
- Rouge1: 0.4902
- Rouge2: 0.3828
- Rougel: 0.4363
- Rougelsum: 0.4521
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 245 | 0.1692 | 0.4844 | 0.3722 | 0.4279 | 0.4439 |
| No log | 2.0 | 490 | 0.1664 | 0.4846 | 0.3719 | 0.4261 | 0.4442 |
| 0.2198 | 3.0 | 735 | 0.1636 | 0.4840 | 0.3752 | 0.4292 | 0.4443 |
| 0.2198 | 4.0 | 980 | 0.1628 | 0.4878 | 0.3754 | 0.4300 | 0.4468 |
| 0.178 | 5.0 | 1225 | 0.1621 | 0.4871 | 0.3791 | 0.4349 | 0.4494 |
| 0.178 | 6.0 | 1470 | 0.1625 | 0.4881 | 0.3782 | 0.4328 | 0.4495 |
| 0.1466 | 7.0 | 1715 | 0.1636 | 0.4910 | 0.3837 | 0.4383 | 0.4538 |
| 0.1466 | 8.0 | 1960 | 0.1633 | 0.4890 | 0.3802 | 0.4343 | 0.4506 |
| 0.1307 | 9.0 | 2205 | 0.1642 | 0.4904 | 0.3836 | 0.4364 | 0.4531 |
| 0.1307 | 10.0 | 2450 | 0.1644 | 0.4902 | 0.3828 | 0.4363 | 0.4521 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|