Update modeling_emotion_classifier.py
Browse files- modeling_emotion_classifier.py +134 -4
modeling_emotion_classifier.py
CHANGED
@@ -1,20 +1,23 @@
|
|
1 |
-
from transformers import PreTrainedModel, HubertModel
|
2 |
import torch.nn as nn
|
3 |
import torch
|
4 |
from .configuration_emotion_classifier import EmotionClassifierConfig
|
5 |
|
6 |
-
|
7 |
class EmotionClassifierHuBERT(PreTrainedModel):
|
8 |
config_class = EmotionClassifierConfig
|
9 |
|
10 |
def __init__(self, config):
|
11 |
super().__init__(config)
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1)
|
14 |
self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1)
|
15 |
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8)
|
16 |
self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True)
|
17 |
-
self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes)
|
18 |
|
19 |
def forward(self, x):
|
20 |
with torch.no_grad():
|
@@ -27,3 +30,130 @@ class EmotionClassifierHuBERT(PreTrainedModel):
|
|
27 |
x, _ = self.bilstm(x)
|
28 |
x = self.fc(x[:, -1, :])
|
29 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, HubertConfig, HubertModel
|
2 |
import torch.nn as nn
|
3 |
import torch
|
4 |
from .configuration_emotion_classifier import EmotionClassifierConfig
|
5 |
|
|
|
6 |
class EmotionClassifierHuBERT(PreTrainedModel):
|
7 |
config_class = EmotionClassifierConfig
|
8 |
|
9 |
def __init__(self, config):
|
10 |
super().__init__(config)
|
11 |
+
|
12 |
+
# Initialize HuBERT without pre-trained weights
|
13 |
+
hubert_config = HubertConfig.from_pretrained("facebook/hubert-large-ls960-ft")
|
14 |
+
self.hubert = HubertModel(hubert_config)
|
15 |
+
|
16 |
self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1)
|
17 |
self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1)
|
18 |
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8)
|
19 |
self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True)
|
20 |
+
self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes)
|
21 |
|
22 |
def forward(self, x):
|
23 |
with torch.no_grad():
|
|
|
30 |
x, _ = self.bilstm(x)
|
31 |
x = self.fc(x[:, -1, :])
|
32 |
return x
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
36 |
+
config = kwargs.pop("config", None)
|
37 |
+
state_dict = kwargs.pop("state_dict", None)
|
38 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
39 |
+
from_tf = kwargs.pop("from_tf", False)
|
40 |
+
force_download = kwargs.pop("force_download", False)
|
41 |
+
resume_download = kwargs.pop("resume_download", False)
|
42 |
+
proxies = kwargs.pop("proxies", None)
|
43 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
44 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
45 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
46 |
+
revision = kwargs.pop("revision", None)
|
47 |
+
mirror = kwargs.pop("mirror", None)
|
48 |
+
|
49 |
+
# Load config if we don't provide a configuration
|
50 |
+
if not isinstance(config, PretrainedConfig):
|
51 |
+
config_path = config if config is not None else pretrained_model_name_or_path
|
52 |
+
config, model_kwargs = cls.config_class.from_pretrained(
|
53 |
+
config_path,
|
54 |
+
*model_args,
|
55 |
+
cache_dir=cache_dir,
|
56 |
+
return_unused_kwargs=True,
|
57 |
+
force_download=force_download,
|
58 |
+
resume_download=resume_download,
|
59 |
+
proxies=proxies,
|
60 |
+
local_files_only=local_files_only,
|
61 |
+
use_auth_token=use_auth_token,
|
62 |
+
revision=revision,
|
63 |
+
**kwargs,
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
model_kwargs = kwargs
|
67 |
+
|
68 |
+
# Load model
|
69 |
+
if pretrained_model_name_or_path is not None:
|
70 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
71 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
72 |
+
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
|
73 |
+
# Load from a TF 1.0 checkpoint in priority if from_tf
|
74 |
+
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
|
75 |
+
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
|
76 |
+
# Load from a TF 2.0 checkpoint in priority if from_tf
|
77 |
+
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
|
78 |
+
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
|
79 |
+
# Load from a PyTorch checkpoint
|
80 |
+
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
81 |
+
else:
|
82 |
+
raise EnvironmentError(
|
83 |
+
f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index']} found in "
|
84 |
+
f"directory {pretrained_model_name_or_path} or '{pretrained_model_name_or_path}' is not a directory."
|
85 |
+
)
|
86 |
+
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
|
87 |
+
archive_file = pretrained_model_name_or_path
|
88 |
+
else:
|
89 |
+
# Load from URL or cache
|
90 |
+
archive_file = hf_bucket_url(
|
91 |
+
pretrained_model_name_or_path,
|
92 |
+
filename=WEIGHTS_NAME,
|
93 |
+
revision=revision,
|
94 |
+
mirror=mirror,
|
95 |
+
)
|
96 |
+
|
97 |
+
try:
|
98 |
+
# Load from URL or cache
|
99 |
+
resolved_archive_file = cached_path(
|
100 |
+
archive_file,
|
101 |
+
cache_dir=cache_dir,
|
102 |
+
force_download=force_download,
|
103 |
+
proxies=proxies,
|
104 |
+
resume_download=resume_download,
|
105 |
+
local_files_only=local_files_only,
|
106 |
+
use_auth_token=use_auth_token,
|
107 |
+
)
|
108 |
+
except EnvironmentError as err:
|
109 |
+
logger.error(err)
|
110 |
+
msg = (
|
111 |
+
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
|
112 |
+
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
|
113 |
+
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
|
114 |
+
)
|
115 |
+
raise EnvironmentError(msg)
|
116 |
+
|
117 |
+
if resolved_archive_file == archive_file:
|
118 |
+
logger.info(f"loading weights file {archive_file}")
|
119 |
+
else:
|
120 |
+
logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
|
121 |
+
else:
|
122 |
+
resolved_archive_file = None
|
123 |
+
|
124 |
+
# Initialize the model
|
125 |
+
model = cls(config)
|
126 |
+
|
127 |
+
if state_dict is None:
|
128 |
+
try:
|
129 |
+
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
130 |
+
except Exception:
|
131 |
+
raise OSError(
|
132 |
+
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
|
133 |
+
f"at '{resolved_archive_file}'"
|
134 |
+
)
|
135 |
+
|
136 |
+
# Remove the prefix 'module' from the keys if present (happens when using DataParallel)
|
137 |
+
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
|
138 |
+
|
139 |
+
# Load only the custom model weights, excluding HuBERT
|
140 |
+
custom_state_dict = {k: v for k, v in state_dict.items() if not k.startswith('hubert.')}
|
141 |
+
missing_keys, unexpected_keys = model.load_state_dict(custom_state_dict, strict=False)
|
142 |
+
|
143 |
+
if len(missing_keys) > 0:
|
144 |
+
logger.warning(f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
145 |
+
f"and are newly initialized: {missing_keys}\n"
|
146 |
+
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.")
|
147 |
+
if len(unexpected_keys) > 0:
|
148 |
+
logger.warning(f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
149 |
+
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
150 |
+
f"This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
151 |
+
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
152 |
+
f"This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical "
|
153 |
+
f"(initializing a BertForSequenceClassification model from a BertForSequenceClassification model).")
|
154 |
+
|
155 |
+
if output_loading_info:
|
156 |
+
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}
|
157 |
+
return model, loading_info
|
158 |
+
|
159 |
+
return model
|