emotion-classifier-hubert / modeling_emotion_classifier.py
KhaldiAbderrhmane's picture
Update modeling_emotion_classifier.py
d181956 verified
raw
history blame
8.68 kB
import os
import torch
import torch.nn as nn
from transformers import PreTrainedModel, HubertConfig, HubertModel
from transformers.file_utils import (
WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
cached_path,
hf_bucket_url,
is_remote_url,
)
from transformers.utils import logging
from .configuration_emotion_classifier import EmotionClassifierConfig
logger = logging.get_logger(__name__)
class EmotionClassifierHuBERT(PreTrainedModel):
config_class = EmotionClassifierConfig
def __init__(self, config):
super().__init__(config)
# Initialize HuBERT without pre-trained weights
hubert_config = HubertConfig.from_pretrained("facebook/hubert-large-ls960-ft")
self.hubert = HubertModel(hubert_config)
self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1)
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8)
self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True)
self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes)
def forward(self, x):
with torch.no_grad():
features = self.hubert(x).last_hidden_state
features = features.transpose(1, 2)
x = torch.relu(self.conv1(features))
x = torch.relu(self.conv2(x))
x = x.transpose(1, 2)
x = self.transformer_encoder(x)
x, _ = self.bilstm(x)
x = self.fc(x[:, -1, :])
return x
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
mirror = kwargs.pop("mirror", None)
# Load config if we don't provide a configuration
if not isinstance(config, EmotionClassifierConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
**kwargs,
)
else:
model_kwargs = kwargs
# Load model
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
# Load from a TF 1.0 checkpoint in priority if from_tf
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
# Load from a TF 2.0 checkpoint in priority if from_tf
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index']} found in "
f"directory {pretrained_model_name_or_path} or '{pretrained_model_name_or_path}' is not a directory."
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
else:
# Load from URL or cache
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision,
mirror=mirror,
)
try:
# Load from URL or cache
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
logger.info(f"loading weights file {archive_file}")
else:
logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
else:
resolved_archive_file = None
# Initialize the model
model = cls(config)
if state_dict is None:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
raise OSError(
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
f"at '{resolved_archive_file}'"
)
# Remove the prefix 'module' from the keys if present (happens when using DataParallel)
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# Load only the custom model weights, excluding HuBERT
custom_state_dict = {k: v for k, v in state_dict.items() if not k.startswith('hubert.')}
missing_keys, unexpected_keys = model.load_state_dict(custom_state_dict, strict=False)
if len(missing_keys) > 0:
logger.warning(f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
f"and are newly initialized: {missing_keys}\n"
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.")
if len(unexpected_keys) > 0:
logger.warning(f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
f"This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
f"This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical "
f"(initializing a BertForSequenceClassification model from a BertForSequenceClassification model).")
if output_loading_info:
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}
return model, loading_info
return model