|
import os |
|
import torch |
|
import torch.nn as nn |
|
from transformers import PreTrainedModel, HubertConfig, HubertModel |
|
from transformers.file_utils import ( |
|
WEIGHTS_NAME, |
|
TF2_WEIGHTS_NAME, |
|
TF_WEIGHTS_NAME, |
|
cached_path, |
|
hf_bucket_url, |
|
is_remote_url, |
|
) |
|
from transformers.utils import logging |
|
from .configuration_emotion_classifier import EmotionClassifierConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class EmotionClassifierHuBERT(PreTrainedModel): |
|
config_class = EmotionClassifierConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
hubert_config = HubertConfig.from_pretrained("facebook/hubert-large-ls960-ft") |
|
self.hubert = HubertModel(hubert_config) |
|
|
|
self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1) |
|
self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8) |
|
self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True) |
|
self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes) |
|
|
|
def forward(self, x): |
|
with torch.no_grad(): |
|
features = self.hubert(x).last_hidden_state |
|
features = features.transpose(1, 2) |
|
x = torch.relu(self.conv1(features)) |
|
x = torch.relu(self.conv2(x)) |
|
x = x.transpose(1, 2) |
|
x = self.transformer_encoder(x) |
|
x, _ = self.bilstm(x) |
|
x = self.fc(x[:, -1, :]) |
|
return x |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
config = kwargs.pop("config", None) |
|
state_dict = kwargs.pop("state_dict", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
from_tf = kwargs.pop("from_tf", False) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
mirror = kwargs.pop("mirror", None) |
|
|
|
|
|
if not isinstance(config, EmotionClassifierConfig): |
|
config_path = config if config is not None else pretrained_model_name_or_path |
|
config, model_kwargs = cls.config_class.from_pretrained( |
|
config_path, |
|
*model_args, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
**kwargs, |
|
) |
|
else: |
|
model_kwargs = kwargs |
|
|
|
|
|
if pretrained_model_name_or_path is not None: |
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") |
|
elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) |
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): |
|
|
|
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index']} found in " |
|
f"directory {pretrained_model_name_or_path} or '{pretrained_model_name_or_path}' is not a directory." |
|
) |
|
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): |
|
archive_file = pretrained_model_name_or_path |
|
else: |
|
|
|
archive_file = hf_bucket_url( |
|
pretrained_model_name_or_path, |
|
filename=WEIGHTS_NAME, |
|
revision=revision, |
|
mirror=mirror, |
|
) |
|
|
|
try: |
|
|
|
resolved_archive_file = cached_path( |
|
archive_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
) |
|
except EnvironmentError as err: |
|
logger.error(err) |
|
msg = ( |
|
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" |
|
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" |
|
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" |
|
) |
|
raise EnvironmentError(msg) |
|
|
|
if resolved_archive_file == archive_file: |
|
logger.info(f"loading weights file {archive_file}") |
|
else: |
|
logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}") |
|
else: |
|
resolved_archive_file = None |
|
|
|
|
|
model = cls(config) |
|
|
|
if state_dict is None: |
|
try: |
|
state_dict = torch.load(resolved_archive_file, map_location="cpu") |
|
except Exception: |
|
raise OSError( |
|
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' " |
|
f"at '{resolved_archive_file}'" |
|
) |
|
|
|
|
|
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} |
|
|
|
|
|
custom_state_dict = {k: v for k, v in state_dict.items() if not k.startswith('hubert.')} |
|
missing_keys, unexpected_keys = model.load_state_dict(custom_state_dict, strict=False) |
|
|
|
if len(missing_keys) > 0: |
|
logger.warning(f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " |
|
f"and are newly initialized: {missing_keys}\n" |
|
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.") |
|
if len(unexpected_keys) > 0: |
|
logger.warning(f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " |
|
f"initializing {model.__class__.__name__}: {unexpected_keys}\n" |
|
f"This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " |
|
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" |
|
f"This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical " |
|
f"(initializing a BertForSequenceClassification model from a BertForSequenceClassification model).") |
|
|
|
if output_loading_info: |
|
loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys} |
|
return model, loading_info |
|
|
|
return model |