File size: 5,605 Bytes
2af0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ff9b2
2af0eb7
 
24ff9b2
2af0eb7
 
 
 
 
 
 
 
 
 
61074ba
2af0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4779f10
2af0eb7
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# See README for more info on how the FeaturePipeline works
# The Ingestion pipeline is part of the FeaturePipeline
# Make sure to ollama serve before running!
import os
import sys

import pymongo
from clearml import PipelineDecorator
from dotenv import load_dotenv
from langchain_community.embeddings import OllamaEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, PointStruct, VectorParams

# Setup ClearML
try:
    load_dotenv(override=True)
except Exception:
    load_dotenv(sys.path[1] + "/.env", override=True)
CLEARML_WEB_HOST = os.getenv("CLEARML_WEB_HOST")
CLEARML_API_HOST = os.getenv("CLEARML_API_HOST")
CLEARML_FILES_HOST = os.getenv("CLEARML_FILES_HOST")
CLEARML_API_ACCESS_KEY = os.getenv("CLEARML_API_ACCESS_KEY")
CLEARML_API_SECRET_KEY = os.getenv("CLEARML_API_SECRETKEY")


@PipelineDecorator.component(cache=False, return_values=["links, resultTypes, texts"])
def retreiveDocuments():
    links = []
    resultTypes = []
    texts = []
    # Create a mongoDB connection
    try:
        load_dotenv(override=True)
    except Exception:
        load_dotenv(sys.path[1] + "/.env", override=True)
    DATABASE_HOST = os.getenv("DATABASE_HOST")
    mongoHost = pymongo.MongoClient(DATABASE_HOST)
    mongoDatabase = mongoHost["twin"]
    collections = mongoDatabase.list_collection_names()
    for collection in collections:
        mongoCollection = mongoDatabase[collection]
        results = mongoCollection.find()
        for result in results:
            # For each document, split it into chunks
            links.append(result["link"])
            resultTypes.append(result["type"])
            texts.append(result["content"])
    return links, resultTypes, texts


@PipelineDecorator.component(cache=False, return_values=["cleanTexts"])
def cleanDocuments(texts):
    cleanTexts = []
    for text in texts:
        cleanTexts.append("".join(char for char in text if 32 <= ord(char) <= 126))
    return cleanTexts


@PipelineDecorator.component(cache=False, return_values=["chunks", "chunkNums"])
def chunkDocuments(texts):
    chunks = []
    chunkNums = []
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=20,
        length_function=len,
        is_separator_regex=False,
    )
    for text in texts:
        textChunks = text_splitter.split_text(text)
        chunkNum = 0
        for chunk in textChunks:
            chunks.append(text_splitter.split_text(chunk))
            chunkNums.append(chunkNum)
            chunkNum += 1
    return chunks, chunkNums


@PipelineDecorator.component(cache=False, return_values=["embeddings"])
def embedChunks(chunks):
    # Setup the text embedder
    MODEL = "llama3.2"
    try:
        load_dotenv(override=True)
    except Exception:
        load_dotenv(sys.path[1] + "/.env", override=True)
    USE_DOCKER = os.getenv("USE_DOCKER")
    if USE_DOCKER == "True":
        embeddingsModel = OllamaEmbeddings(model=MODEL, base_url="http://host.docker.internal:11434")
    else:
        embeddingsModel = OllamaEmbeddings(model=MODEL)
    return embeddingsModel.embed_documents(chunks)


# Create embeddings for each chunk, of length 3072 using the embedding model
@PipelineDecorator.component(cache=False)
def storeEmbeddings(embeddings, links, resultTypes, chunks, chunkNums):
    # Create a qdrant connection
    try:
        load_dotenv(override=True)
    except Exception:
        load_dotenv(sys.path[1] + "/.env", override=True)
    USE_QDRANT_CLOUD = os.getenv("USE_QDRANT_CLOUD")
    QDRANT_CLOUD_URL = os.getenv("QDRANT_CLOUD_URL")
    QDRANT_APIKEY = os.getenv("QDRANT_APIKEY")
    if USE_QDRANT_CLOUD == "True":
        qClient = QdrantClient(url=QDRANT_CLOUD_URL, api_key=QDRANT_APIKEY)
    else:
        qClient = QdrantClient(url=QDRANT_CLOUD_URL)

    # Create qdrant collections to store embeddings
    if not qClient.collection_exists("Github"):
        qClient.create_collection(
            collection_name="Github",
            vectors_config=VectorParams(size=3072, distance=Distance.COSINE),
        )
    if not qClient.collection_exists("Document"):
        qClient.create_collection(
            collection_name="Document",
            vectors_config=VectorParams(size=3072, distance=Distance.COSINE),
        )
    chunkIndex = -1
    documentIndex = -1
    for chunkNum in chunkNums:
        chunkIndex += 1
        if chunkNum == 0:
            documentIndex += 1
        # Store the embedding along with some metadata into the Qdrant vector database
        qClient.upsert(
            collection_name=resultTypes[documentIndex],
            wait=True,
            points=[
                PointStruct(
                    id=chunkIndex,
                    vector=embeddings[chunkIndex],
                    payload={
                        "link": links[documentIndex],
                        "type": resultTypes[documentIndex],
                        "chunk": chunkNum,
                        "text": chunks[chunkIndex],
                    },
                )
            ],
        )


# Ingestion Pipeline
@PipelineDecorator.pipeline(
    name="Feature Pipeline",
    project="RAG LLM",
    version="0.3",
)
def main():
    links, resultTypes, texts = retreiveDocuments()
    texts = cleanDocuments(texts)
    chunks, chunkNums = chunkDocuments(texts)
    embeddings = embedChunks(chunks)
    storeEmbeddings(embeddings, links, resultTypes, chunks, chunkNums)


if __name__ == "__main__":
    PipelineDecorator.run_locally()
    main()