File size: 8,001 Bytes
96eb931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/bkkaggle/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "5VIGyIus8Vr7"
},
"source": [
"Take a look at the [repository](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) for more information"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "7wNjDKdQy35h"
},
"source": [
"# Install"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "TRm-USlsHgEV"
},
"outputs": [],
"source": [
"!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Pt3igws3eiVp"
},
"outputs": [],
"source": [
"import os\n",
"os.chdir('pytorch-CycleGAN-and-pix2pix/')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z1EySlOXwwoa"
},
"outputs": [],
"source": [
"!pip install -r requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "8daqlgVhw29P"
},
"source": [
"# Datasets\n",
"\n",
"Download one of the official datasets with:\n",
"\n",
"- `bash ./datasets/download_cyclegan_dataset.sh [apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos]`\n",
"\n",
"Or use your own dataset by creating the appropriate folders and adding in the images.\n",
"\n",
"- Create a dataset folder under `/dataset` for your dataset.\n",
"- Create subfolders `testA`, `testB`, `trainA`, and `trainB` under your dataset's folder. Place any images you want to transform from a to b (cat2dog) in the `testA` folder, images you want to transform from b to a (dog2cat) in the `testB` folder, and do the same for the `trainA` and `trainB` folders."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "vrdOettJxaCc"
},
"outputs": [],
"source": [
"!bash ./datasets/download_cyclegan_dataset.sh horse2zebra"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "gdUz4116xhpm"
},
"source": [
"# Pretrained models\n",
"\n",
"Download one of the official pretrained models with:\n",
"\n",
"- `bash ./scripts/download_cyclegan_model.sh [apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower]`\n",
"\n",
"Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "B75UqtKhxznS"
},
"outputs": [],
"source": [
"!bash ./scripts/download_cyclegan_model.sh horse2zebra"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "yFw1kDQBx3LN"
},
"source": [
"# Training\n",
"\n",
"- `python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan`\n",
"\n",
"Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. I've found that a batch size of 16 fits onto 4 V100s and can finish training an epoch in ~90s.\n",
"\n",
"Once your model has trained, copy over the last checkpoint to a format that the testing model can automatically detect:\n",
"\n",
"Use `cp ./checkpoints/horse2zebra/latest_net_G_A.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class A to class B and `cp ./checkpoints/horse2zebra/latest_net_G_B.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class B to class A.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "0sp7TCT2x9dB"
},
"outputs": [],
"source": [
"!python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan --display_id -1"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "9UkcaFZiyASl"
},
"source": [
"# Testing\n",
"\n",
"- `python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout`\n",
"\n",
"Change the `--dataroot` and `--name` to be consistent with your trained model's configuration.\n",
"\n",
"> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n",
"> The option --model test is used for generating results of CycleGAN only for one side. This option will automatically set --dataset_mode single, which only loads the images from one set. On the contrary, using --model cycle_gan requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.\n",
"\n",
"> For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uCsKkEq0yGh0"
},
"outputs": [],
"source": [
"!python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "OzSKIPUByfiN"
},
"source": [
"# Visualize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "9Mgg8raPyizq"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_fake.png')\n",
"plt.imshow(img)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "0G3oVH9DyqLQ"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_real.png')\n",
"plt.imshow(img)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"include_colab_link": true,
"name": "CycleGAN",
"provenance": []
},
"environment": {
"name": "tf2-gpu.2-3.m74",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-3:m74"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|