File size: 3,596 Bytes
0b8027f aa6c9bf 0b8027f 9338025 b35de52 0b8027f aa6c9bf 0b8027f 709a2e6 7ec9296 ac6e53b 7ec9296 17f65df 709a2e6 17f65df 0b8027f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
base_model:
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
---
# L3.1-70b-Ginny
Like with everything, I have to start somewhere right? As such this model is named **Ginny**.

L3.1-70b-Ginny is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NousResearch/Hermes-3-Llama-3.1-70B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-70B)
* [Fizzarolli/L3.1-70b-glitz-v0.2](https://huggingface.co/Fizzarolli/L3.1-70b-glitz-v0.2)
* [cyberagent/Llama-3.1-70B-Japanese-Instruct-2407](https://huggingface.co/cyberagent/Llama-3.1-70B-Japanese-Instruct-2407)
* [Sao10K/L3-70B-Euryale-v2.1](https://huggingface.co/Sao10K/L3-70B-Euryale-v2.1)
Using Hermes as a base, I mixed in Glitz and Euryale which I both liked. I think I prefer Glitz more actually.
Additionally I decided to throw in cyberagent's Japanese Instruct in the hopes it will boost Japanese capabilities.
*(Though on recommendations from others, I've steeled myself to never use Hermes as base ever again.)*
## Model Testing
- The Japanese Instruct was a success in my books. The model appears to be more capable in Japanese and I think it can do translations given the right prompt.
- Model can get quite rambly. Lower Temp helps.
## Quants & Hosts
[](https://huggingface.co/mradermacher/L3.1-70b-Ginny-GGUF) [](https://huggingface.co/mradermacher/L3.1-70b-Ginny-i1-GGUF) [](https://featherless.ai/models/KaraKaraWitch/L3.1-70b-Ginny)
## Yap / Chat Format
~~Hermes likes ChatML~~, but the other 3 models use L3 Instruct.
...Use L3 Instruct.
## 🧩 Configuration
```yaml
models:
- model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
density: 0.33
weight: 0.25
- model: Fizzarolli/L3.1-70b-glitz-v0.2
parameters:
density: 0.7
weight: 0.5
- model: cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
parameters:
density: 0.5
weight: 0.25
- model: Sao10K/L3-70B-Euryale-v2.1
parameters:
density: 0.7
weight: 0.5
merge_method: ties
base_model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
normalize: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KaraKaraWitch/L3.1-70b-Ginny"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |