Update README.md
Browse files
README.md
CHANGED
@@ -56,9 +56,62 @@ The model was evaluated using the following metrics:
|
|
56 |
|
57 |
## How to Use
|
58 |
|
59 |
-
###
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
## How to Use
|
58 |
|
59 |
+
### Input Format
|
60 |
|
61 |
+
The model expects input data in JSON format with the following fields:
|
62 |
+
- "Crop Name": String
|
63 |
+
- "Target Yield": Numeric
|
64 |
+
- "Field Size": Numeric
|
65 |
+
- "pH (water)": Numeric
|
66 |
+
- "Organic Carbon": Numeric
|
67 |
+
- "Total Nitrogen": Numeric
|
68 |
+
- "Phosphorus (M3)": Numeric
|
69 |
+
- "Potassium (exch.)": Numeric
|
70 |
+
- "Soil moisture": Numeric
|
71 |
|
72 |
+
### Preprocessing Steps
|
73 |
+
|
74 |
+
1. Load your input data.
|
75 |
+
2. Ensure all required fields are present and in the expected format.
|
76 |
+
3. Handle any missing values if necessary.
|
77 |
+
4. Scale numerical features based on the training data.
|
78 |
+
5. One-hot encode categorical features (if applicable).
|
79 |
+
|
80 |
+
### Inference Procedure
|
81 |
+
|
82 |
+
#### Example Code:
|
83 |
+
|
84 |
+
```python
|
85 |
+
from sklearn.externals import joblib
|
86 |
+
import pandas as pd
|
87 |
+
|
88 |
+
# Load the trained model
|
89 |
+
model = joblib.load('random_forest_model.joblib')
|
90 |
+
|
91 |
+
# Example input data
|
92 |
+
new_data = {
|
93 |
+
'Crop Name': 'apple',
|
94 |
+
'Target Yield': 1200.0,
|
95 |
+
'Field Size': 1.0,
|
96 |
+
'pH (water)': 5.76,
|
97 |
+
'Organic Carbon': 12.9,
|
98 |
+
'Total Nitrogen': 1.1,
|
99 |
+
'Phosphorus (M3)': 1.2,
|
100 |
+
'Potassium (exch.)': 1.7,
|
101 |
+
'Soil moisture': 11.4
|
102 |
+
}
|
103 |
+
|
104 |
+
# Preprocess the input data
|
105 |
+
input_df = pd.DataFrame([new_data])
|
106 |
+
|
107 |
+
# Ensure the same columns as in training
|
108 |
+
input_df = pd.get_dummies(input_df, columns=['Crop Name'])
|
109 |
+
for col in X.columns:
|
110 |
+
if col not in input_df.columns:
|
111 |
+
input_df[col] = 0
|
112 |
+
|
113 |
+
# Make predictions
|
114 |
+
predictions = model.predict(input_df)
|
115 |
+
|
116 |
+
print("Predicted nutrient needs:")
|
117 |
+
print(predictions)
|