--- base_model: btaskel/Tifa-DeepsexV2-7b-MGRPO-safetensors language: - zh - en library_name: transformers tags: - incremental-pretraining - sft - reinforcement-learning - roleplay - cot - mlx - mlx-my-repo license: apache-2.0 --- # KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit The Model [KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit](https://huggingface.co/KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit) was converted to MLX format from [btaskel/Tifa-DeepsexV2-7b-MGRPO-safetensors](https://huggingface.co/btaskel/Tifa-DeepsexV2-7b-MGRPO-safetensors) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("KYUNGYONG/Tifa-DeepsexV2-7b-MGRPO-safetensors-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```