File size: 2,489 Bytes
0d2594b 35f3351 8996941 35f3351 8996941 35f3351 b1068b0 8996941 b1068b0 0d2594b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---
Download the model
```python
# This is to set the path to save the model
from pathlib import Path
models_path = Path.home().joinpath('Question_Generation_model', 'UTeMGPT')
models_path.mkdir(parents=True, exist_ok=True)
# Download the model
from huggingface_hub import snapshot_download
my_model = snapshot_download(repo_id="KLimaLima/finetuned-Question-Generation-mistral-7b-instruct", local_dir=models_path)
```
To load the model that have been downloaded
```python
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = my_model,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
```
This model uses alpaca prompt format such as below
```python
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
instruction = 'Write an inquisitive question about a specific text span in a given sentence such that the answer is not in the text.'
sentence = "I want to bake a cake during my free time. I need to know the ingredients that need to be use."
inputs = tokenizer(
[
alpaca_prompt.format(
instruction,
sentence,
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
```
To generate output
```python
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
```
# Uploaded model
- **Developed by:** KLimaLima
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|