File size: 2,489 Bytes
0d2594b
 
 
 
 
 
 
 
 
 
 
 
 
35f3351
 
 
 
 
8996941
 
35f3351
 
 
8996941
35f3351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1068b0
 
 
 
 
 
 
 
 
 
 
 
8996941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1068b0
 
0d2594b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
---

Download the model
```python
# This is to set the path to save the model
from pathlib import Path

models_path = Path.home().joinpath('Question_Generation_model', 'UTeMGPT')
models_path.mkdir(parents=True, exist_ok=True)

# Download the model
from huggingface_hub import snapshot_download
my_model = snapshot_download(repo_id="KLimaLima/finetuned-Question-Generation-mistral-7b-instruct", local_dir=models_path)
```

To load the model that have been downloaded
```python
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = my_model,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
```

This model uses alpaca prompt format such as below
```python
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

instruction = 'Write an inquisitive question about a specific text span in a given sentence such that the answer is not in the text.'
sentence = "I want to bake a cake during my free time. I need to know the ingredients that need to be use."

inputs = tokenizer(
[
    alpaca_prompt.format(
        instruction,
        sentence,
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

```

To generate output
```python
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
```

# Uploaded  model

- **Developed by:** KLimaLima
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit

This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)