File size: 5,256 Bytes
4c9f4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
- ollama
license: apache-2.0
language:
- en
---

# kubectl Operator Model

- **Developed by:** dereklck
- **License:** Apache-2.0
- **Fine-tuned from model:** [unsloth/Llama-3.2-1B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit)
- **Model type:** GGUF (compatible with Ollama)
- **Language:** English

This Llama-based model was fine-tuned to generate `kubectl` commands based on user descriptions. It was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.

---

## Model Details

### Purpose

The model assists users by:

- Generating accurate `kubectl` commands based on natural language descriptions.
- Providing brief explanations about Kubernetes for general queries.
- Requesting additional information if the instruction is incomplete or ambiguous.

### Intended Users

- Kubernetes administrators
- DevOps engineers
- Developers working with Kubernetes clusters

### Training Process

- **Base Model:** Unsloth's Llama-3.2-1B-Instruct-bnb-4bit
- **Fine-tuning:** Leveraged the Unsloth framework and Hugging Face's TRL library for efficient training.
- **Training Data:** Customized datasets focused on Kubernetes operations and `kubectl` command usage.

### Performance

While the model aims to generate accurate commands, there might be occasional hallucinations or inaccuracies. Users should:

- Validate the generated commands before execution.
- Use the model as a guide rather than an absolute source.

---

## Usage

### Prompt Template

The model uses the following prompt template to generate responses:

```plaintext
You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.

### Instruction:
<Your instruction here>

### Response:
<Assistant's response>
</s>
```

### Parameters

- **Temperature:** `0.3` (controls the randomness; lower values make outputs more deterministic)
- **Stop Token:** `</s>` (indicates the end of the assistant's response)

---

### Examples

#### Example 1: Generating a Command

**Instruction:**

```
List all pods in the kube-system namespace.
```

**Response:**

```
kubectl get pods -n kube-system
</s>
```

---

#### Example 2: Handling Ambiguity

**Instruction:**

```
Restart the deployment.
```

**Response:**

```
Could you please specify the name of the deployment you want to restart?
</s>
```

---

#### Example 3: Providing Explanations

**Instruction:**

```
What is a Kubernetes service?
```

**Response:**

```
A Kubernetes Service is an abstraction that defines a logical set of Pods and a policy by which to access them, often used to expose applications running on a set of Pods to other services or end-users.
</s>
```

---

## Deployment with Ollama

### Prerequisites

- Install [Ollama](https://github.com/jmorganca/ollama) on your system.
- Ensure you have the GGUF model file (`kubectl_operator.Q8_0.gguf`).

### Steps

1. **Create the Modelfile**

   Save the following content as a file named `modelfile`:

   ```plaintext
   FROM kubectl_operator.Q8_0.gguf

   SYSTEM "You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation."

   PARAMETER temperature 0.3
   PARAMETER stop </s>

   TEMPLATE """
   You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.

   ### Instruction:
   {{ .Prompt }}

   ### Response:
   {{ .Response }}
   </s>
   """
   ```

2. **Create the Model with Ollama**

   Open your terminal and run the following command to create the model:

   ```bash
   ollama create kubectl_operator -f modelfile
   ```

   This command tells Ollama to create a new model named `kubectl_operator` using the configuration specified in `modelfile`.

3. **Run the Model**

   Start interacting with your model:

   ```bash
   ollama run kubectl_operator
   ```

   This will initiate the model and prompt you for input based on the template provided.

---

## Limitations and Considerations

- **Accuracy:** The model may occasionally produce incorrect or suboptimal commands. Always review the output before executing.
- **Hallucinations:** In rare cases, the model might generate irrelevant information. If the response seems off-topic, consider rephrasing your instruction.
- **Security:** Be cautious when executing generated commands, especially in production environments.

---

## Feedback and Contributions

We welcome any comments or participation to improve the model and dataset. If you encounter issues or have suggestions for improvement:

- **GitHub:** [Unsloth Repository](https://github.com/unslothai/unsloth)
- **Contact:** Reach out to the developer, **dereklck**, for further assistance.

---