File size: 5,256 Bytes
4c9f4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
- ollama
license: apache-2.0
language:
- en
---
# kubectl Operator Model
- **Developed by:** dereklck
- **License:** Apache-2.0
- **Fine-tuned from model:** [unsloth/Llama-3.2-1B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit)
- **Model type:** GGUF (compatible with Ollama)
- **Language:** English
This Llama-based model was fine-tuned to generate `kubectl` commands based on user descriptions. It was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.
---
## Model Details
### Purpose
The model assists users by:
- Generating accurate `kubectl` commands based on natural language descriptions.
- Providing brief explanations about Kubernetes for general queries.
- Requesting additional information if the instruction is incomplete or ambiguous.
### Intended Users
- Kubernetes administrators
- DevOps engineers
- Developers working with Kubernetes clusters
### Training Process
- **Base Model:** Unsloth's Llama-3.2-1B-Instruct-bnb-4bit
- **Fine-tuning:** Leveraged the Unsloth framework and Hugging Face's TRL library for efficient training.
- **Training Data:** Customized datasets focused on Kubernetes operations and `kubectl` command usage.
### Performance
While the model aims to generate accurate commands, there might be occasional hallucinations or inaccuracies. Users should:
- Validate the generated commands before execution.
- Use the model as a guide rather than an absolute source.
---
## Usage
### Prompt Template
The model uses the following prompt template to generate responses:
```plaintext
You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.
### Instruction:
<Your instruction here>
### Response:
<Assistant's response>
</s>
```
### Parameters
- **Temperature:** `0.3` (controls the randomness; lower values make outputs more deterministic)
- **Stop Token:** `</s>` (indicates the end of the assistant's response)
---
### Examples
#### Example 1: Generating a Command
**Instruction:**
```
List all pods in the kube-system namespace.
```
**Response:**
```
kubectl get pods -n kube-system
</s>
```
---
#### Example 2: Handling Ambiguity
**Instruction:**
```
Restart the deployment.
```
**Response:**
```
Could you please specify the name of the deployment you want to restart?
</s>
```
---
#### Example 3: Providing Explanations
**Instruction:**
```
What is a Kubernetes service?
```
**Response:**
```
A Kubernetes Service is an abstraction that defines a logical set of Pods and a policy by which to access them, often used to expose applications running on a set of Pods to other services or end-users.
</s>
```
---
## Deployment with Ollama
### Prerequisites
- Install [Ollama](https://github.com/jmorganca/ollama) on your system.
- Ensure you have the GGUF model file (`kubectl_operator.Q8_0.gguf`).
### Steps
1. **Create the Modelfile**
Save the following content as a file named `modelfile`:
```plaintext
FROM kubectl_operator.Q8_0.gguf
SYSTEM "You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation."
PARAMETER temperature 0.3
PARAMETER stop </s>
TEMPLATE """
You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.
### Instruction:
{{ .Prompt }}
### Response:
{{ .Response }}
</s>
"""
```
2. **Create the Model with Ollama**
Open your terminal and run the following command to create the model:
```bash
ollama create kubectl_operator -f modelfile
```
This command tells Ollama to create a new model named `kubectl_operator` using the configuration specified in `modelfile`.
3. **Run the Model**
Start interacting with your model:
```bash
ollama run kubectl_operator
```
This will initiate the model and prompt you for input based on the template provided.
---
## Limitations and Considerations
- **Accuracy:** The model may occasionally produce incorrect or suboptimal commands. Always review the output before executing.
- **Hallucinations:** In rare cases, the model might generate irrelevant information. If the response seems off-topic, consider rephrasing your instruction.
- **Security:** Be cautious when executing generated commands, especially in production environments.
---
## Feedback and Contributions
We welcome any comments or participation to improve the model and dataset. If you encounter issues or have suggestions for improvement:
- **GitHub:** [Unsloth Repository](https://github.com/unslothai/unsloth)
- **Contact:** Reach out to the developer, **dereklck**, for further assistance.
--- |