Jyiyiyiyi commited on
Commit
8a77742
·
1 Parent(s): 23f713b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -51
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -24,57 +24,11 @@ pip install -U sentence-transformers
24
  Then you can use the model like this:
25
 
26
  ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
-
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
- ```
34
-
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
- ## Training
45
- The model was trained with the parameters:
46
-
47
- **DataLoader**:
48
-
49
- `torch.utils.data.dataloader.DataLoader` of length 45861 with parameters:
50
- ```
51
- {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
  ```
53
 
54
- **Loss**:
55
-
56
- `sentence_transformers.losses.MultipleNegativesSymmetricRankingLoss.MultipleNegativesSymmetricRankingLoss` with parameters:
57
- ```
58
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
59
- ```
60
-
61
- Parameters of the fit()-Method:
62
- ```
63
- {
64
- "epochs": 1,
65
- "evaluation_steps": 4586,
66
- "evaluator": "sentence_transformers.evaluation.AlignmentandUniformityEvaluator.AlignmentandUniformityEvaluator",
67
- "max_grad_norm": 1,
68
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
- "optimizer_params": {
70
- "lr": 5e-05
71
- },
72
- "scheduler": "WarmupLinear",
73
- "steps_per_epoch": null,
74
- "warmup_steps": 4587,
75
- "weight_decay": 0.01
76
- }
77
- ```
78
 
79
 
80
  ## Full Model Architecture
@@ -90,4 +44,12 @@ SentenceTransformer(
90
 
91
  ## Citing & Authors
92
 
93
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
7
 
8
  ---
9
 
10
+ # {CLFE(ConMath)}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
24
  Then you can use the model like this:
25
 
26
  ```python
27
+ embedding_latex = model.encode([{'latex': latex}])
28
+ embedding_pmml = model.encode([{'mathml': pmml}])
29
+ embedding_cmml = model.encode([{'mathml': cmml}])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ```
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
  ## Full Model Architecture
 
44
 
45
  ## Citing & Authors
46
 
47
+ <!--- Describe where people can find more information -->
48
+ @inproceedings{wang2023math,
49
+ title={Math Information Retrieval with Contrastive Learning of Formula Embeddings},
50
+ author={Wang, Jingyi and Tian, Xuedong},
51
+ booktitle={International Conference on Web Information Systems Engineering},
52
+ pages={97--107},
53
+ year={2023},
54
+ organization={Springer}
55
+ }