--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.08 +/- 19.81 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gymnasium as gym from time import sleep from huggingface_sb3 import package_to_hub from stable_baselines3 import PPO from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.vec_env import DummyVecEnv # Create the environment env = make_vec_env("LunarLander-v2", n_envs=16) # We added some parameters to accelerate the training model = PPO( policy="MlpPolicy", env=env, n_steps=1024, batch_size=64, n_epochs=4, gamma=0.999, gae_lambda=0.98, ent_coef=0.01, verbose=1, ) # Train it for 1,000,000 timesteps model.learn(total_timesteps=1000000) # Save the model model.save(model_name) # Test the model # model = PPO.load(model_name) eval_env = Monitor(gym.make("LunarLander-v2")) mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Visualize the model env = gym.make("LunarLander-v2", render_mode='human') state, _ = env.reset() stop = False while not stop: action, _ = model.predict(state) state, reward, terminated, truncated, info = env.step(action) stop = terminated or truncated env.render() sleep(0.05) if terminated or truncated: observation, info = env.reset() env.close() ... ```