Jr23xd23 commited on
Commit
7beef95
ยท
verified ยท
1 Parent(s): e846463

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -62
README.md CHANGED
@@ -1,80 +1,66 @@
1
- Math_Arabic_Llama-3.2-3B-Instruct
2
- Model Description
3
- Math_Arabic_Llama-3.2-3B-Instruct is a fine-tuned version of the Llama-3.2-3B-Instruct model, specifically optimized for solving mathematical problems in Arabic. This model leverages the power of the Arabic LLaMA Math Dataset to provide accurate and contextually relevant solutions to a wide range of mathematical queries in the Arabic language.
4
- Key Features
 
 
 
 
 
 
 
 
 
 
5
 
6
- Specialized in Arabic mathematical problem-solving
7
- Covers a broad spectrum of mathematical topics
8
- Ideal for educational applications and Arabic-language tutoring systems
9
- Built on the robust Llama-3.2-3B-Instruct architecture
10
 
11
- Model Details
12
 
13
- Architecture: Transformer-based language model
14
- Task: Text Generation (Instruction Following)
15
- Language: Arabic
16
- Base Model: meta-llama/Llama-3.2-3B-Instruct
17
- Dataset: Arabic LLaMA Math Dataset
18
- Number of Parameters: 3 billion
19
- Fine-tuned by: Jr23xd23
20
 
21
- Training Data
22
- The model was fine-tuned on the Arabic LLaMA Math Dataset, which comprises 12,496 diverse mathematical examples covering:
23
 
24
- Basic Arithmetic
25
- Algebra
26
- Geometry
27
- Probability
28
- Combinatorics
 
29
 
30
- Each example in the dataset consists of:
31
 
32
- An Instruction: The problem statement in Arabic
33
- A Solution: The corresponding answer in Arabic
 
 
 
 
34
 
35
- Intended Use
36
- Primary Use Cases
 
37
 
38
- Solving mathematical problems in Arabic
39
- Powering educational applications for Arabic-speaking students
40
- Enhancing Arabic-language tutoring systems
41
- Facilitating mathematical reasoning tasks in Arabic
42
 
43
- Usage Example
44
- Here's how you can use the model with the Hugging Face Transformers library:
45
- pythonCopyfrom transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
46
 
47
- # Load model and tokenizer
48
  tokenizer = AutoTokenizer.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
49
  model = AutoModelForCausalLM.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
50
 
51
  # Example: Solving a math problem in Arabic
52
  input_text = "ู…ุง ู‡ูˆ ู…ุฌู…ูˆุน ุงู„ุฒูˆุงูŠุง ููŠ ู…ุซู„ุซุŸ" # What is the sum of angles in a triangle?
53
  inputs = tokenizer(input_text, return_tensors="pt")
54
- output = model.generate(**inputs, max_length=100)
55
  print(tokenizer.decode(output[0], skip_special_tokens=True))
56
- Limitations
57
-
58
- The model is optimized for mathematical tasks in Arabic and may not perform well on general language tasks.
59
- Performance may decrease for extremely complex mathematical problems that fall outside the scope of the training dataset.
60
- The model's responses should be verified for critical applications.
61
-
62
- Ethical Considerations
63
-
64
- Users should be aware of potential biases in the training data.
65
- The model should not be used as the sole decision-maker in high-stakes scenarios.
66
- Implement appropriate safeguards when deploying this model in educational settings.
67
-
68
- License
69
- This model is licensed under the Apache 2.0 License.
70
- Citation
71
- If you use this model in your research or projects, please use the following citation:
72
- bibtexCopy@model{Math_Arabic_Llama_3.2_3B_Instruct,
73
- title={Math_Arabic_Llama-3.2-3B-Instruct},
74
- author={Jr23xd23},
75
- year={2024},
76
- publisher={Hugging Face},
77
- url={https://huggingface.co/Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct},
78
- }
79
- Acknowledgements
80
- We extend our gratitude to the creators of the Arabic LLaMA Math Dataset for providing an invaluable resource that made this fine-tuning possible.
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - llama
5
+ - text-generation
6
+ - instruct
7
+ - arabic
8
+ - math
9
+ - fine-tuned
10
+ datasets:
11
+ - Jr23xd23/Arabic_LLaMA_Math_Dataset
12
+ base_model: meta-llama/Llama-3.2-3B-Instruct
13
+ inference: true
14
+ ---
15
 
16
+ # Math_Arabic_Llama-3.2-3B-Instruct
 
 
 
17
 
18
+ ## Model Description
19
 
20
+ **Math_Arabic_Llama-3.2-3B-Instruct** is a fine-tuned version of the **Llama-3.2-3B-Instruct** model, tailored for solving mathematical problems in Arabic. The model was trained using the **[Arabic LLaMA Math Dataset](https://github.com/jaberjaber23/Arabic-LLaMA-Math-Dataset)**, which includes a wide range of mathematical problems in natural language (Arabic). This model is ideal for educational applications, tutoring, and systems that require automatic math problem-solving in Arabic.
 
 
 
 
 
 
21
 
22
+ ## Model Details
 
23
 
24
+ - **Model Type**: Transformer-based language model fine-tuned for text generation.
25
+ - **Languages**: Arabic
26
+ - **Base Model**: [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
27
+ - **Dataset**: [Arabic LLaMA Math Dataset](https://github.com/jaberjaber23/Arabic-LLaMA-Math-Dataset)
28
+ - **Number of Parameters**: 3 billion
29
+ - **Fine-tuned by**: [Jr23xd23](https://huggingface.co/Jr23xd23)
30
 
31
+ ## Training Data
32
 
33
+ The model was fine-tuned on the **Arabic LLaMA Math Dataset**, which consists of 12,496 examples covering various mathematical topics, such as:
34
+ - Basic Arithmetic
35
+ - Algebra
36
+ - Geometry
37
+ - Probability
38
+ - Combinatorics
39
 
40
+ Each example in the dataset includes:
41
+ - **Instruction**: The problem statement in Arabic.
42
+ - **Solution**: The solution to the problem in Arabic.
43
 
44
+ ## Intended Use
 
 
 
45
 
46
+ ### Primary Use Cases:
47
+ - Solving mathematical problems in Arabic
48
+ - Educational applications
49
+ - Tutoring systems for Arabic-speaking students
50
+ - Mathematical reasoning tasks in Arabic
51
+
52
+ ### How to Use
53
+
54
+ You can use the model in Python with the Hugging Face `transformers` library:
55
+
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
 
 
59
  tokenizer = AutoTokenizer.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
60
  model = AutoModelForCausalLM.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
61
 
62
  # Example: Solving a math problem in Arabic
63
  input_text = "ู…ุง ู‡ูˆ ู…ุฌู…ูˆุน ุงู„ุฒูˆุงูŠุง ููŠ ู…ุซู„ุซุŸ" # What is the sum of angles in a triangle?
64
  inputs = tokenizer(input_text, return_tensors="pt")
65
+ output = model.generate(**inputs)
66
  print(tokenizer.decode(output[0], skip_special_tokens=True))