Upload 7 files
Browse files- beats/.DS_Store +0 -0
- beats/BEATs.py +180 -0
- beats/Tokenizers.py +172 -0
- beats/__init__.py +0 -0
- beats/backbone.py +783 -0
- beats/modules.py +218 -0
- beats/quantizer.py +215 -0
beats/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
beats/BEATs.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beats
|
| 4 |
+
# Copyright (c) 2022 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
from torch.nn import LayerNorm
|
| 14 |
+
import torchaudio.compliance.kaldi as ta_kaldi
|
| 15 |
+
|
| 16 |
+
from .backbone import (
|
| 17 |
+
TransformerEncoder,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
import logging
|
| 21 |
+
from typing import Optional
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class BEATsConfig:
|
| 27 |
+
def __init__(self, cfg=None):
|
| 28 |
+
self.input_patch_size: int = -1 # path size of patch embedding
|
| 29 |
+
self.embed_dim: int = 512 # patch embedding dimension
|
| 30 |
+
self.conv_bias: bool = False # include bias in conv encoder
|
| 31 |
+
|
| 32 |
+
self.encoder_layers: int = 12 # num encoder layers in the transformer
|
| 33 |
+
self.encoder_embed_dim: int = 768 # encoder embedding dimension
|
| 34 |
+
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
|
| 35 |
+
self.encoder_attention_heads: int = 12 # num encoder attention heads
|
| 36 |
+
self.activation_fn: str = "gelu" # activation function to use
|
| 37 |
+
|
| 38 |
+
self.layer_wise_gradient_decay_ratio: float = 1.0 # ratio for layer-wise gradient decay
|
| 39 |
+
self.layer_norm_first: bool = False # apply layernorm first in the transformer
|
| 40 |
+
self.deep_norm: bool = False # apply deep_norm first in the transformer
|
| 41 |
+
|
| 42 |
+
# dropouts
|
| 43 |
+
self.dropout: float = 0.1 # dropout probability for the transformer
|
| 44 |
+
self.attention_dropout: float = 0.1 # dropout probability for attention weights
|
| 45 |
+
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
|
| 46 |
+
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
|
| 47 |
+
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
|
| 48 |
+
|
| 49 |
+
# positional embeddings
|
| 50 |
+
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
|
| 51 |
+
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
|
| 52 |
+
|
| 53 |
+
# relative position embedding
|
| 54 |
+
self.relative_position_embedding: bool = False # apply relative position embedding
|
| 55 |
+
self.num_buckets: int = 320 # number of buckets for relative position embedding
|
| 56 |
+
self.max_distance: int = 1280 # maximum distance for relative position embedding
|
| 57 |
+
self.gru_rel_pos: bool = False # apply gated relative position embedding
|
| 58 |
+
|
| 59 |
+
# label predictor
|
| 60 |
+
self.finetuned_model: bool = False # whether the model is a fine-tuned model.
|
| 61 |
+
self.predictor_dropout: float = 0.1 # dropout probability for the predictor
|
| 62 |
+
self.predictor_class: int = 527 # target class number for the predictor
|
| 63 |
+
|
| 64 |
+
if cfg is not None:
|
| 65 |
+
self.update(cfg)
|
| 66 |
+
|
| 67 |
+
def update(self, cfg: dict):
|
| 68 |
+
self.__dict__.update(cfg)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class BEATs(nn.Module):
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
cfg: BEATsConfig,
|
| 75 |
+
) -> None:
|
| 76 |
+
super().__init__()
|
| 77 |
+
logger.info(f"BEATs Config: {cfg.__dict__}")
|
| 78 |
+
|
| 79 |
+
self.cfg = cfg
|
| 80 |
+
|
| 81 |
+
self.embed = cfg.embed_dim
|
| 82 |
+
self.post_extract_proj = (
|
| 83 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
| 84 |
+
if self.embed != cfg.encoder_embed_dim
|
| 85 |
+
else None
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.input_patch_size = cfg.input_patch_size
|
| 89 |
+
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
|
| 90 |
+
bias=cfg.conv_bias)
|
| 91 |
+
|
| 92 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
| 93 |
+
|
| 94 |
+
assert not cfg.deep_norm or not cfg.layer_norm_first
|
| 95 |
+
self.encoder = TransformerEncoder(cfg)
|
| 96 |
+
self.layer_norm = LayerNorm(self.embed)
|
| 97 |
+
|
| 98 |
+
if cfg.finetuned_model:
|
| 99 |
+
self.predictor_dropout = nn.Dropout(cfg.predictor_dropout)
|
| 100 |
+
self.predictor = nn.Linear(cfg.encoder_embed_dim, cfg.predictor_class)
|
| 101 |
+
else:
|
| 102 |
+
self.predictor = None
|
| 103 |
+
|
| 104 |
+
def forward_padding_mask(
|
| 105 |
+
self,
|
| 106 |
+
features: torch.Tensor,
|
| 107 |
+
padding_mask: torch.Tensor,
|
| 108 |
+
) -> torch.Tensor:
|
| 109 |
+
extra = padding_mask.size(1) % features.size(1)
|
| 110 |
+
if extra > 0:
|
| 111 |
+
padding_mask = padding_mask[:, :-extra]
|
| 112 |
+
padding_mask = padding_mask.view(
|
| 113 |
+
padding_mask.size(0), features.size(1), -1
|
| 114 |
+
)
|
| 115 |
+
padding_mask = padding_mask.all(-1)
|
| 116 |
+
return padding_mask
|
| 117 |
+
|
| 118 |
+
def preprocess(
|
| 119 |
+
self,
|
| 120 |
+
source: torch.Tensor,
|
| 121 |
+
fbank_mean: float = 15.41663,
|
| 122 |
+
fbank_std: float = 6.55582,
|
| 123 |
+
) -> torch.Tensor:
|
| 124 |
+
fbanks = []
|
| 125 |
+
for waveform in source:
|
| 126 |
+
waveform = waveform.unsqueeze(0) * 2 ** 15
|
| 127 |
+
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
|
| 128 |
+
fbanks.append(fbank)
|
| 129 |
+
fbank = torch.stack(fbanks, dim=0)
|
| 130 |
+
fbank = (fbank - fbank_mean) / (2 * fbank_std)
|
| 131 |
+
return fbank
|
| 132 |
+
|
| 133 |
+
def extract_features(
|
| 134 |
+
self,
|
| 135 |
+
source: torch.Tensor,
|
| 136 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 137 |
+
fbank_mean: float = 15.41663,
|
| 138 |
+
fbank_std: float = 6.55582,
|
| 139 |
+
feature_only=False,
|
| 140 |
+
):
|
| 141 |
+
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std).to(torch.float32)
|
| 142 |
+
|
| 143 |
+
if padding_mask is not None:
|
| 144 |
+
padding_mask = self.forward_padding_mask(fbank, padding_mask)
|
| 145 |
+
|
| 146 |
+
fbank = fbank.unsqueeze(1)
|
| 147 |
+
features = self.patch_embedding(fbank)
|
| 148 |
+
features = features.reshape(features.shape[0], features.shape[1], -1)
|
| 149 |
+
features = features.transpose(1, 2)
|
| 150 |
+
features = self.layer_norm(features)
|
| 151 |
+
|
| 152 |
+
if padding_mask is not None:
|
| 153 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
| 154 |
+
|
| 155 |
+
if self.post_extract_proj is not None:
|
| 156 |
+
features = self.post_extract_proj(features)
|
| 157 |
+
|
| 158 |
+
x = self.dropout_input(features)
|
| 159 |
+
|
| 160 |
+
x, layer_results = self.encoder(
|
| 161 |
+
x,
|
| 162 |
+
padding_mask=padding_mask,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
if not feature_only and self.predictor is not None:
|
| 166 |
+
x = self.predictor_dropout(x)
|
| 167 |
+
logits = self.predictor(x)
|
| 168 |
+
|
| 169 |
+
if padding_mask is not None and padding_mask.any():
|
| 170 |
+
logits[padding_mask] = 0
|
| 171 |
+
logits = logits.sum(dim=1)
|
| 172 |
+
logits = logits / (~padding_mask).sum(dim=1).unsqueeze(-1).expand_as(logits)
|
| 173 |
+
else:
|
| 174 |
+
logits = logits.mean(dim=1)
|
| 175 |
+
|
| 176 |
+
lprobs = torch.sigmoid(logits)
|
| 177 |
+
|
| 178 |
+
return lprobs, padding_mask
|
| 179 |
+
else:
|
| 180 |
+
return x, padding_mask
|
beats/Tokenizers.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beats
|
| 4 |
+
# Copyright (c) 2022 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
from torch.nn import LayerNorm
|
| 14 |
+
import torchaudio.compliance.kaldi as ta_kaldi
|
| 15 |
+
|
| 16 |
+
from .backbone import (
|
| 17 |
+
TransformerEncoder,
|
| 18 |
+
)
|
| 19 |
+
from .quantizer import (
|
| 20 |
+
NormEMAVectorQuantizer,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
import logging
|
| 24 |
+
from typing import Optional
|
| 25 |
+
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class TokenizersConfig:
|
| 30 |
+
def __init__(self, cfg=None):
|
| 31 |
+
self.input_patch_size: int = -1 # path size of patch embedding
|
| 32 |
+
self.embed_dim: int = 512 # patch embedding dimension
|
| 33 |
+
self.conv_bias: bool = False # include bias in conv encoder
|
| 34 |
+
|
| 35 |
+
self.encoder_layers: int = 12 # num encoder layers in the transformer
|
| 36 |
+
self.encoder_embed_dim: int = 768 # encoder embedding dimension
|
| 37 |
+
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
|
| 38 |
+
self.encoder_attention_heads: int = 12 # num encoder attention heads
|
| 39 |
+
self.activation_fn: str = "gelu" # activation function to use
|
| 40 |
+
|
| 41 |
+
self.layer_norm_first: bool = False # apply layernorm first in the transformer
|
| 42 |
+
self.deep_norm: bool = False # apply deep_norm first in the transformer
|
| 43 |
+
|
| 44 |
+
# dropouts
|
| 45 |
+
self.dropout: float = 0.1 # dropout probability for the transformer
|
| 46 |
+
self.attention_dropout: float = 0.1 # dropout probability for attention weights
|
| 47 |
+
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
|
| 48 |
+
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
|
| 49 |
+
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
|
| 50 |
+
|
| 51 |
+
# positional embeddings
|
| 52 |
+
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
|
| 53 |
+
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
|
| 54 |
+
|
| 55 |
+
# relative position embedding
|
| 56 |
+
self.relative_position_embedding: bool = False # apply relative position embedding
|
| 57 |
+
self.num_buckets: int = 320 # number of buckets for relative position embedding
|
| 58 |
+
self.max_distance: int = 1280 # maximum distance for relative position embedding
|
| 59 |
+
self.gru_rel_pos: bool = False # apply gated relative position embedding
|
| 60 |
+
|
| 61 |
+
# quantizer
|
| 62 |
+
self.quant_n: int = 1024 # codebook number in quantizer
|
| 63 |
+
self.quant_dim: int = 256 # codebook dimension in quantizer
|
| 64 |
+
|
| 65 |
+
if cfg is not None:
|
| 66 |
+
self.update(cfg)
|
| 67 |
+
|
| 68 |
+
def update(self, cfg: dict):
|
| 69 |
+
self.__dict__.update(cfg)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class Tokenizers(nn.Module):
|
| 73 |
+
def __init__(
|
| 74 |
+
self,
|
| 75 |
+
cfg: TokenizersConfig,
|
| 76 |
+
) -> None:
|
| 77 |
+
super().__init__()
|
| 78 |
+
logger.info(f"Tokenizers Config: {cfg.__dict__}")
|
| 79 |
+
|
| 80 |
+
self.cfg = cfg
|
| 81 |
+
|
| 82 |
+
self.embed = cfg.embed_dim
|
| 83 |
+
self.post_extract_proj = (
|
| 84 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
| 85 |
+
if self.embed != cfg.encoder_embed_dim
|
| 86 |
+
else None
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
self.input_patch_size = cfg.input_patch_size
|
| 90 |
+
self.patch_embedding = nn.Conv2d(1, self.embed, kernel_size=self.input_patch_size, stride=self.input_patch_size,
|
| 91 |
+
bias=cfg.conv_bias)
|
| 92 |
+
|
| 93 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
| 94 |
+
|
| 95 |
+
assert not cfg.deep_norm or not cfg.layer_norm_first
|
| 96 |
+
self.encoder = TransformerEncoder(cfg)
|
| 97 |
+
self.layer_norm = LayerNorm(self.embed)
|
| 98 |
+
|
| 99 |
+
self.quantize = NormEMAVectorQuantizer(
|
| 100 |
+
n_embed=cfg.quant_n, embedding_dim=cfg.quant_dim, beta=1.0, kmeans_init=True, decay=0.99,
|
| 101 |
+
)
|
| 102 |
+
self.quant_n = cfg.quant_n
|
| 103 |
+
self.quantize_layer = nn.Sequential(
|
| 104 |
+
nn.Linear(cfg.encoder_embed_dim, cfg.encoder_embed_dim),
|
| 105 |
+
nn.Tanh(),
|
| 106 |
+
nn.Linear(cfg.encoder_embed_dim, cfg.quant_dim) # for quantize
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
def forward_padding_mask(
|
| 110 |
+
self,
|
| 111 |
+
features: torch.Tensor,
|
| 112 |
+
padding_mask: torch.Tensor,
|
| 113 |
+
) -> torch.Tensor:
|
| 114 |
+
extra = padding_mask.size(1) % features.size(1)
|
| 115 |
+
if extra > 0:
|
| 116 |
+
padding_mask = padding_mask[:, :-extra]
|
| 117 |
+
padding_mask = padding_mask.view(
|
| 118 |
+
padding_mask.size(0), features.size(1), -1
|
| 119 |
+
)
|
| 120 |
+
padding_mask = padding_mask.all(-1)
|
| 121 |
+
return padding_mask
|
| 122 |
+
|
| 123 |
+
def preprocess(
|
| 124 |
+
self,
|
| 125 |
+
source: torch.Tensor,
|
| 126 |
+
fbank_mean: float = 15.41663,
|
| 127 |
+
fbank_std: float = 6.55582,
|
| 128 |
+
) -> torch.Tensor:
|
| 129 |
+
fbanks = []
|
| 130 |
+
for waveform in source:
|
| 131 |
+
waveform = waveform.unsqueeze(0) * 2 ** 15
|
| 132 |
+
fbank = ta_kaldi.fbank(waveform, num_mel_bins=128, sample_frequency=16000, frame_length=25, frame_shift=10)
|
| 133 |
+
fbanks.append(fbank)
|
| 134 |
+
fbank = torch.stack(fbanks, dim=0)
|
| 135 |
+
fbank = (fbank - fbank_mean) / (2 * fbank_std)
|
| 136 |
+
return fbank
|
| 137 |
+
|
| 138 |
+
def extract_labels(
|
| 139 |
+
self,
|
| 140 |
+
source: torch.Tensor,
|
| 141 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 142 |
+
fbank_mean: float = 15.41663,
|
| 143 |
+
fbank_std: float = 6.55582,
|
| 144 |
+
):
|
| 145 |
+
fbank = self.preprocess(source, fbank_mean=fbank_mean, fbank_std=fbank_std)
|
| 146 |
+
|
| 147 |
+
if padding_mask is not None:
|
| 148 |
+
padding_mask = self.forward_padding_mask(fbank, padding_mask)
|
| 149 |
+
|
| 150 |
+
fbank = fbank.unsqueeze(1)
|
| 151 |
+
features = self.patch_embedding(fbank)
|
| 152 |
+
features = features.reshape(features.shape[0], features.shape[1], -1)
|
| 153 |
+
features = features.transpose(1, 2)
|
| 154 |
+
features = self.layer_norm(features)
|
| 155 |
+
|
| 156 |
+
if padding_mask is not None:
|
| 157 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
| 158 |
+
|
| 159 |
+
if self.post_extract_proj is not None:
|
| 160 |
+
features = self.post_extract_proj(features)
|
| 161 |
+
|
| 162 |
+
x = self.dropout_input(features)
|
| 163 |
+
|
| 164 |
+
x, layer_results = self.encoder(
|
| 165 |
+
x,
|
| 166 |
+
padding_mask=padding_mask,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
quantize_input = self.quantize_layer(x)
|
| 170 |
+
quantize_feature, embed_loss, embed_ind = self.quantize(quantize_input)
|
| 171 |
+
|
| 172 |
+
return embed_ind
|
beats/__init__.py
ADDED
|
File without changes
|
beats/backbone.py
ADDED
|
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beats
|
| 4 |
+
# Copyright (c) 2022 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
import numpy as np
|
| 12 |
+
from typing import Dict, Optional, Tuple
|
| 13 |
+
import torch
|
| 14 |
+
from torch import Tensor, nn
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
from torch.nn import LayerNorm, Parameter
|
| 17 |
+
from .modules import (
|
| 18 |
+
GradMultiply,
|
| 19 |
+
SamePad,
|
| 20 |
+
get_activation_fn,
|
| 21 |
+
GLU_Linear,
|
| 22 |
+
quant_noise,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class TransformerEncoder(nn.Module):
|
| 27 |
+
def __init__(self, args):
|
| 28 |
+
super().__init__()
|
| 29 |
+
|
| 30 |
+
self.dropout = args.dropout
|
| 31 |
+
self.embedding_dim = args.encoder_embed_dim
|
| 32 |
+
|
| 33 |
+
self.pos_conv = nn.Conv1d(
|
| 34 |
+
self.embedding_dim,
|
| 35 |
+
self.embedding_dim,
|
| 36 |
+
kernel_size=args.conv_pos,
|
| 37 |
+
padding=args.conv_pos // 2,
|
| 38 |
+
groups=args.conv_pos_groups,
|
| 39 |
+
)
|
| 40 |
+
dropout = 0
|
| 41 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
|
| 42 |
+
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
| 43 |
+
nn.init.constant_(self.pos_conv.bias, 0)
|
| 44 |
+
|
| 45 |
+
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
|
| 46 |
+
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
|
| 47 |
+
|
| 48 |
+
if hasattr(args, "relative_position_embedding"):
|
| 49 |
+
self.relative_position_embedding = args.relative_position_embedding
|
| 50 |
+
self.num_buckets = args.num_buckets
|
| 51 |
+
self.max_distance = args.max_distance
|
| 52 |
+
else:
|
| 53 |
+
self.relative_position_embedding = False
|
| 54 |
+
self.num_buckets = 0
|
| 55 |
+
self.max_distance = 0
|
| 56 |
+
|
| 57 |
+
self.layers = nn.ModuleList(
|
| 58 |
+
[
|
| 59 |
+
TransformerSentenceEncoderLayer(
|
| 60 |
+
embedding_dim=self.embedding_dim,
|
| 61 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
| 62 |
+
num_attention_heads=args.encoder_attention_heads,
|
| 63 |
+
dropout=self.dropout,
|
| 64 |
+
attention_dropout=args.attention_dropout,
|
| 65 |
+
activation_dropout=args.activation_dropout,
|
| 66 |
+
activation_fn=args.activation_fn,
|
| 67 |
+
layer_norm_first=args.layer_norm_first,
|
| 68 |
+
deep_norm=args.deep_norm,
|
| 69 |
+
has_relative_attention_bias=self.relative_position_embedding,
|
| 70 |
+
num_buckets=self.num_buckets,
|
| 71 |
+
max_distance=self.max_distance,
|
| 72 |
+
gru_rel_pos=args.gru_rel_pos,
|
| 73 |
+
encoder_layers=args.encoder_layers,
|
| 74 |
+
)
|
| 75 |
+
for i in range(args.encoder_layers)
|
| 76 |
+
]
|
| 77 |
+
)
|
| 78 |
+
if self.relative_position_embedding:
|
| 79 |
+
for i in range(1, args.encoder_layers):
|
| 80 |
+
del self.layers[i].self_attn.relative_attention_bias
|
| 81 |
+
self.layers[i].self_attn.relative_attention_bias = self.layers[0].self_attn.relative_attention_bias
|
| 82 |
+
|
| 83 |
+
self.layer_norm_first = args.layer_norm_first
|
| 84 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
| 85 |
+
self.layerdrop = args.encoder_layerdrop
|
| 86 |
+
|
| 87 |
+
self.apply(init_bert_params)
|
| 88 |
+
|
| 89 |
+
if args.deep_norm:
|
| 90 |
+
deep_norm_beta = math.pow(8 * args.encoder_layers, -1 / 4)
|
| 91 |
+
for i in range(args.encoder_layers):
|
| 92 |
+
nn.init.xavier_normal_(self.layers[i].self_attn.k_proj.weight, gain=1)
|
| 93 |
+
nn.init.xavier_normal_(self.layers[i].self_attn.v_proj.weight, gain=deep_norm_beta)
|
| 94 |
+
nn.init.xavier_normal_(self.layers[i].self_attn.q_proj.weight, gain=1)
|
| 95 |
+
nn.init.xavier_normal_(self.layers[i].self_attn.out_proj.weight, gain=deep_norm_beta)
|
| 96 |
+
nn.init.xavier_normal_(self.layers[i].fc1.weight, gain=deep_norm_beta)
|
| 97 |
+
nn.init.xavier_normal_(self.layers[i].fc2.weight, gain=deep_norm_beta)
|
| 98 |
+
|
| 99 |
+
self.layer_wise_gradient_decay_ratio = getattr(args, "layer_wise_gradient_decay_ratio", 1)
|
| 100 |
+
|
| 101 |
+
def forward(self, x, padding_mask=None, layer=None):
|
| 102 |
+
x, layer_results = self.extract_features(x, padding_mask, layer)
|
| 103 |
+
|
| 104 |
+
if self.layer_norm_first and layer is None:
|
| 105 |
+
x = self.layer_norm(x)
|
| 106 |
+
|
| 107 |
+
return x, layer_results
|
| 108 |
+
|
| 109 |
+
def extract_features(self, x, padding_mask=None, tgt_layer=None):
|
| 110 |
+
|
| 111 |
+
if padding_mask is not None:
|
| 112 |
+
x[padding_mask] = 0
|
| 113 |
+
|
| 114 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
| 115 |
+
x_conv = x_conv.transpose(1, 2)
|
| 116 |
+
x = x + x_conv
|
| 117 |
+
|
| 118 |
+
if not self.layer_norm_first:
|
| 119 |
+
x = self.layer_norm(x)
|
| 120 |
+
|
| 121 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 122 |
+
|
| 123 |
+
# B x T x C -> T x B x C
|
| 124 |
+
x = x.transpose(0, 1)
|
| 125 |
+
|
| 126 |
+
layer_results = []
|
| 127 |
+
z = None
|
| 128 |
+
if tgt_layer is not None:
|
| 129 |
+
layer_results.append((x, z))
|
| 130 |
+
r = None
|
| 131 |
+
pos_bias = None
|
| 132 |
+
for i, layer in enumerate(self.layers):
|
| 133 |
+
if self.layer_wise_gradient_decay_ratio != 1.0:
|
| 134 |
+
x = GradMultiply.apply(x, self.layer_wise_gradient_decay_ratio)
|
| 135 |
+
dropout_probability = np.random.random()
|
| 136 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
| 137 |
+
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_bias)
|
| 138 |
+
if tgt_layer is not None:
|
| 139 |
+
layer_results.append((x, z))
|
| 140 |
+
if i == tgt_layer:
|
| 141 |
+
r = x
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
if r is not None:
|
| 145 |
+
x = r
|
| 146 |
+
|
| 147 |
+
# T x B x C -> B x T x C
|
| 148 |
+
x = x.transpose(0, 1)
|
| 149 |
+
|
| 150 |
+
return x, layer_results
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class TransformerSentenceEncoderLayer(nn.Module):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
embedding_dim: float = 768,
|
| 157 |
+
ffn_embedding_dim: float = 3072,
|
| 158 |
+
num_attention_heads: float = 8,
|
| 159 |
+
dropout: float = 0.1,
|
| 160 |
+
attention_dropout: float = 0.1,
|
| 161 |
+
activation_dropout: float = 0.1,
|
| 162 |
+
activation_fn: str = "relu",
|
| 163 |
+
layer_norm_first: bool = False,
|
| 164 |
+
deep_norm: bool = False,
|
| 165 |
+
has_relative_attention_bias: bool = False,
|
| 166 |
+
num_buckets: int = 0,
|
| 167 |
+
max_distance: int = 0,
|
| 168 |
+
rescale_init: bool = False,
|
| 169 |
+
gru_rel_pos: bool = False,
|
| 170 |
+
encoder_layers: int = 0,
|
| 171 |
+
) -> None:
|
| 172 |
+
|
| 173 |
+
super().__init__()
|
| 174 |
+
self.embedding_dim = embedding_dim
|
| 175 |
+
self.dropout = dropout
|
| 176 |
+
self.activation_dropout = activation_dropout
|
| 177 |
+
|
| 178 |
+
self.activation_name = activation_fn
|
| 179 |
+
self.activation_fn = get_activation_fn(activation_fn)
|
| 180 |
+
self.self_attn = MultiheadAttention(
|
| 181 |
+
self.embedding_dim,
|
| 182 |
+
num_attention_heads,
|
| 183 |
+
dropout=attention_dropout,
|
| 184 |
+
self_attention=True,
|
| 185 |
+
has_relative_attention_bias=has_relative_attention_bias,
|
| 186 |
+
num_buckets=num_buckets,
|
| 187 |
+
max_distance=max_distance,
|
| 188 |
+
rescale_init=rescale_init,
|
| 189 |
+
gru_rel_pos=gru_rel_pos,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 193 |
+
self.dropout2 = nn.Dropout(self.activation_dropout)
|
| 194 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 195 |
+
|
| 196 |
+
self.layer_norm_first = layer_norm_first
|
| 197 |
+
|
| 198 |
+
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
| 199 |
+
|
| 200 |
+
if self.activation_name == "glu":
|
| 201 |
+
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
|
| 202 |
+
else:
|
| 203 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
| 204 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
| 205 |
+
|
| 206 |
+
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
| 207 |
+
|
| 208 |
+
self.deep_norm = deep_norm
|
| 209 |
+
if self.deep_norm:
|
| 210 |
+
self.deep_norm_alpha = math.pow(2 * encoder_layers, 1 / 4)
|
| 211 |
+
else:
|
| 212 |
+
self.deep_norm_alpha = 1
|
| 213 |
+
|
| 214 |
+
def forward(
|
| 215 |
+
self,
|
| 216 |
+
x: torch.Tensor,
|
| 217 |
+
self_attn_mask: torch.Tensor = None,
|
| 218 |
+
self_attn_padding_mask: torch.Tensor = None,
|
| 219 |
+
need_weights: bool = False,
|
| 220 |
+
pos_bias=None
|
| 221 |
+
):
|
| 222 |
+
residual = x
|
| 223 |
+
|
| 224 |
+
if self.layer_norm_first:
|
| 225 |
+
x = self.self_attn_layer_norm(x)
|
| 226 |
+
x, attn, pos_bias = self.self_attn(
|
| 227 |
+
query=x,
|
| 228 |
+
key=x,
|
| 229 |
+
value=x,
|
| 230 |
+
key_padding_mask=self_attn_padding_mask,
|
| 231 |
+
need_weights=False,
|
| 232 |
+
attn_mask=self_attn_mask,
|
| 233 |
+
position_bias=pos_bias
|
| 234 |
+
)
|
| 235 |
+
x = self.dropout1(x)
|
| 236 |
+
x = residual + x
|
| 237 |
+
|
| 238 |
+
residual = x
|
| 239 |
+
x = self.final_layer_norm(x)
|
| 240 |
+
if self.activation_name == "glu":
|
| 241 |
+
x = self.fc1(x)
|
| 242 |
+
else:
|
| 243 |
+
x = self.activation_fn(self.fc1(x))
|
| 244 |
+
x = self.dropout2(x)
|
| 245 |
+
x = self.fc2(x)
|
| 246 |
+
x = self.dropout3(x)
|
| 247 |
+
x = residual + x
|
| 248 |
+
else:
|
| 249 |
+
x, attn, pos_bias = self.self_attn(
|
| 250 |
+
query=x,
|
| 251 |
+
key=x,
|
| 252 |
+
value=x,
|
| 253 |
+
key_padding_mask=self_attn_padding_mask,
|
| 254 |
+
need_weights=need_weights,
|
| 255 |
+
attn_mask=self_attn_mask,
|
| 256 |
+
position_bias=pos_bias
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
x = self.dropout1(x)
|
| 260 |
+
x = residual * self.deep_norm_alpha + x
|
| 261 |
+
|
| 262 |
+
x = self.self_attn_layer_norm(x)
|
| 263 |
+
|
| 264 |
+
residual = x
|
| 265 |
+
if self.activation_name == "glu":
|
| 266 |
+
x = self.fc1(x)
|
| 267 |
+
else:
|
| 268 |
+
x = self.activation_fn(self.fc1(x))
|
| 269 |
+
x = self.dropout2(x)
|
| 270 |
+
x = self.fc2(x)
|
| 271 |
+
x = self.dropout3(x)
|
| 272 |
+
x = residual * self.deep_norm_alpha + x
|
| 273 |
+
x = self.final_layer_norm(x)
|
| 274 |
+
|
| 275 |
+
return x, attn, pos_bias
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class MultiheadAttention(nn.Module):
|
| 279 |
+
"""Multi-headed attention.
|
| 280 |
+
|
| 281 |
+
See "Attention Is All You Need" for more details.
|
| 282 |
+
"""
|
| 283 |
+
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
embed_dim,
|
| 287 |
+
num_heads,
|
| 288 |
+
kdim=None,
|
| 289 |
+
vdim=None,
|
| 290 |
+
dropout=0.0,
|
| 291 |
+
bias=True,
|
| 292 |
+
add_bias_kv=False,
|
| 293 |
+
add_zero_attn=False,
|
| 294 |
+
self_attention=False,
|
| 295 |
+
encoder_decoder_attention=False,
|
| 296 |
+
q_noise=0.0,
|
| 297 |
+
qn_block_size=8,
|
| 298 |
+
has_relative_attention_bias=False,
|
| 299 |
+
num_buckets=32,
|
| 300 |
+
max_distance=128,
|
| 301 |
+
gru_rel_pos=False,
|
| 302 |
+
rescale_init=False,
|
| 303 |
+
):
|
| 304 |
+
super().__init__()
|
| 305 |
+
self.embed_dim = embed_dim
|
| 306 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
| 307 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
| 308 |
+
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 309 |
+
|
| 310 |
+
self.num_heads = num_heads
|
| 311 |
+
self.dropout_module = nn.Dropout(dropout)
|
| 312 |
+
|
| 313 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
| 314 |
+
self.num_buckets = num_buckets
|
| 315 |
+
self.max_distance = max_distance
|
| 316 |
+
if self.has_relative_attention_bias:
|
| 317 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
| 318 |
+
|
| 319 |
+
self.head_dim = embed_dim // num_heads
|
| 320 |
+
self.q_head_dim = self.head_dim
|
| 321 |
+
self.k_head_dim = self.head_dim
|
| 322 |
+
assert (
|
| 323 |
+
self.head_dim * num_heads == self.embed_dim
|
| 324 |
+
), "embed_dim must be divisible by num_heads"
|
| 325 |
+
self.scaling = self.head_dim ** -0.5
|
| 326 |
+
|
| 327 |
+
self.self_attention = self_attention
|
| 328 |
+
self.encoder_decoder_attention = encoder_decoder_attention
|
| 329 |
+
|
| 330 |
+
assert not self.self_attention or self.qkv_same_dim, (
|
| 331 |
+
"Self-attention requires query, key and " "value to be of the same size"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
k_bias = True
|
| 335 |
+
if rescale_init:
|
| 336 |
+
k_bias = False
|
| 337 |
+
|
| 338 |
+
k_embed_dim = embed_dim
|
| 339 |
+
q_embed_dim = embed_dim
|
| 340 |
+
|
| 341 |
+
self.k_proj = quant_noise(
|
| 342 |
+
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
|
| 343 |
+
)
|
| 344 |
+
self.v_proj = quant_noise(
|
| 345 |
+
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
|
| 346 |
+
)
|
| 347 |
+
self.q_proj = quant_noise(
|
| 348 |
+
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
self.out_proj = quant_noise(
|
| 352 |
+
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
if add_bias_kv:
|
| 356 |
+
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
|
| 357 |
+
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
|
| 358 |
+
else:
|
| 359 |
+
self.bias_k = self.bias_v = None
|
| 360 |
+
|
| 361 |
+
self.add_zero_attn = add_zero_attn
|
| 362 |
+
|
| 363 |
+
self.gru_rel_pos = gru_rel_pos
|
| 364 |
+
if self.gru_rel_pos:
|
| 365 |
+
self.grep_linear = nn.Linear(self.q_head_dim, 8)
|
| 366 |
+
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
|
| 367 |
+
|
| 368 |
+
self.reset_parameters()
|
| 369 |
+
|
| 370 |
+
def reset_parameters(self):
|
| 371 |
+
if self.qkv_same_dim:
|
| 372 |
+
# Empirically observed the convergence to be much better with
|
| 373 |
+
# the scaled initialization
|
| 374 |
+
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
|
| 375 |
+
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
|
| 376 |
+
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
|
| 377 |
+
else:
|
| 378 |
+
nn.init.xavier_uniform_(self.k_proj.weight)
|
| 379 |
+
nn.init.xavier_uniform_(self.v_proj.weight)
|
| 380 |
+
nn.init.xavier_uniform_(self.q_proj.weight)
|
| 381 |
+
|
| 382 |
+
nn.init.xavier_uniform_(self.out_proj.weight)
|
| 383 |
+
if self.out_proj.bias is not None:
|
| 384 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
| 385 |
+
if self.bias_k is not None:
|
| 386 |
+
nn.init.xavier_normal_(self.bias_k)
|
| 387 |
+
if self.bias_v is not None:
|
| 388 |
+
nn.init.xavier_normal_(self.bias_v)
|
| 389 |
+
if self.has_relative_attention_bias:
|
| 390 |
+
nn.init.xavier_normal_(self.relative_attention_bias.weight)
|
| 391 |
+
|
| 392 |
+
def _relative_positions_bucket(self, relative_positions, bidirectional=True):
|
| 393 |
+
num_buckets = self.num_buckets
|
| 394 |
+
max_distance = self.max_distance
|
| 395 |
+
relative_buckets = 0
|
| 396 |
+
|
| 397 |
+
if bidirectional:
|
| 398 |
+
num_buckets = num_buckets // 2
|
| 399 |
+
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
|
| 400 |
+
relative_positions = torch.abs(relative_positions)
|
| 401 |
+
else:
|
| 402 |
+
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
|
| 403 |
+
|
| 404 |
+
max_exact = num_buckets // 2
|
| 405 |
+
is_small = relative_positions < max_exact
|
| 406 |
+
|
| 407 |
+
relative_postion_if_large = max_exact + (
|
| 408 |
+
torch.log(relative_positions.float() / max_exact)
|
| 409 |
+
/ math.log(max_distance / max_exact)
|
| 410 |
+
* (num_buckets - max_exact)
|
| 411 |
+
).to(torch.long)
|
| 412 |
+
relative_postion_if_large = torch.min(
|
| 413 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
|
| 417 |
+
return relative_buckets
|
| 418 |
+
|
| 419 |
+
def compute_bias(self, query_length, key_length):
|
| 420 |
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
| 421 |
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
| 422 |
+
relative_position = memory_position - context_position
|
| 423 |
+
relative_position_bucket = self._relative_positions_bucket(
|
| 424 |
+
relative_position,
|
| 425 |
+
bidirectional=True
|
| 426 |
+
)
|
| 427 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
| 428 |
+
values = self.relative_attention_bias(relative_position_bucket)
|
| 429 |
+
values = values.permute([2, 0, 1])
|
| 430 |
+
return values
|
| 431 |
+
|
| 432 |
+
def forward(
|
| 433 |
+
self,
|
| 434 |
+
query,
|
| 435 |
+
key: Optional[Tensor],
|
| 436 |
+
value: Optional[Tensor],
|
| 437 |
+
key_padding_mask: Optional[Tensor] = None,
|
| 438 |
+
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
| 439 |
+
need_weights: bool = True,
|
| 440 |
+
static_kv: bool = False,
|
| 441 |
+
attn_mask: Optional[Tensor] = None,
|
| 442 |
+
before_softmax: bool = False,
|
| 443 |
+
need_head_weights: bool = False,
|
| 444 |
+
position_bias: Optional[Tensor] = None
|
| 445 |
+
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
|
| 446 |
+
"""Input shape: Time x Batch x Channel
|
| 447 |
+
|
| 448 |
+
Args:
|
| 449 |
+
key_padding_mask (ByteTensor, optional): mask to exclude
|
| 450 |
+
keys that are pads, of shape `(batch, src_len)`, where
|
| 451 |
+
padding elements are indicated by 1s.
|
| 452 |
+
need_weights (bool, optional): return the attention weights,
|
| 453 |
+
averaged over heads (default: False).
|
| 454 |
+
attn_mask (ByteTensor, optional): typically used to
|
| 455 |
+
implement causal attention, where the mask prevents the
|
| 456 |
+
attention from looking forward in time (default: None).
|
| 457 |
+
before_softmax (bool, optional): return the raw attention
|
| 458 |
+
weights and values before the attention softmax.
|
| 459 |
+
need_head_weights (bool, optional): return the attention
|
| 460 |
+
weights for each head. Implies *need_weights*. Default:
|
| 461 |
+
return the average attention weights over all heads.
|
| 462 |
+
"""
|
| 463 |
+
if need_head_weights:
|
| 464 |
+
need_weights = True
|
| 465 |
+
|
| 466 |
+
is_tpu = query.device.type == "xla"
|
| 467 |
+
|
| 468 |
+
tgt_len, bsz, embed_dim = query.size()
|
| 469 |
+
src_len = tgt_len
|
| 470 |
+
assert embed_dim == self.embed_dim
|
| 471 |
+
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
| 472 |
+
if key is not None:
|
| 473 |
+
src_len, key_bsz, _ = key.size()
|
| 474 |
+
if not torch.jit.is_scripting():
|
| 475 |
+
assert key_bsz == bsz
|
| 476 |
+
assert value is not None
|
| 477 |
+
assert src_len, bsz == value.shape[:2]
|
| 478 |
+
|
| 479 |
+
if self.has_relative_attention_bias and position_bias is None:
|
| 480 |
+
position_bias = self.compute_bias(tgt_len, src_len)
|
| 481 |
+
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
|
| 482 |
+
|
| 483 |
+
if incremental_state is not None:
|
| 484 |
+
saved_state = self._get_input_buffer(incremental_state)
|
| 485 |
+
if saved_state is not None and "prev_key" in saved_state:
|
| 486 |
+
# previous time steps are cached - no need to recompute
|
| 487 |
+
# key and value if they are static
|
| 488 |
+
if static_kv:
|
| 489 |
+
assert self.encoder_decoder_attention and not self.self_attention
|
| 490 |
+
key = value = None
|
| 491 |
+
else:
|
| 492 |
+
saved_state = None
|
| 493 |
+
|
| 494 |
+
if self.self_attention:
|
| 495 |
+
q = self.q_proj(query)
|
| 496 |
+
k = self.k_proj(query)
|
| 497 |
+
v = self.v_proj(query)
|
| 498 |
+
elif self.encoder_decoder_attention:
|
| 499 |
+
# encoder-decoder attention
|
| 500 |
+
q = self.q_proj(query)
|
| 501 |
+
if key is None:
|
| 502 |
+
assert value is None
|
| 503 |
+
k = v = None
|
| 504 |
+
else:
|
| 505 |
+
k = self.k_proj(key)
|
| 506 |
+
v = self.v_proj(key)
|
| 507 |
+
|
| 508 |
+
else:
|
| 509 |
+
assert key is not None and value is not None
|
| 510 |
+
q = self.q_proj(query)
|
| 511 |
+
k = self.k_proj(key)
|
| 512 |
+
v = self.v_proj(value)
|
| 513 |
+
q *= self.scaling
|
| 514 |
+
alpha = 32
|
| 515 |
+
q *= 1 / alpha
|
| 516 |
+
|
| 517 |
+
if self.bias_k is not None:
|
| 518 |
+
assert self.bias_v is not None
|
| 519 |
+
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
|
| 520 |
+
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
|
| 521 |
+
if attn_mask is not None:
|
| 522 |
+
attn_mask = torch.cat(
|
| 523 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 524 |
+
)
|
| 525 |
+
if key_padding_mask is not None:
|
| 526 |
+
key_padding_mask = torch.cat(
|
| 527 |
+
[
|
| 528 |
+
key_padding_mask,
|
| 529 |
+
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
|
| 530 |
+
],
|
| 531 |
+
dim=1,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
q = (
|
| 535 |
+
q.contiguous()
|
| 536 |
+
.view(tgt_len, bsz * self.num_heads, self.q_head_dim)
|
| 537 |
+
.transpose(0, 1)
|
| 538 |
+
)
|
| 539 |
+
if k is not None:
|
| 540 |
+
k = (
|
| 541 |
+
k.contiguous()
|
| 542 |
+
.view(-1, bsz * self.num_heads, self.k_head_dim)
|
| 543 |
+
.transpose(0, 1)
|
| 544 |
+
)
|
| 545 |
+
if v is not None:
|
| 546 |
+
v = (
|
| 547 |
+
v.contiguous()
|
| 548 |
+
.view(-1, bsz * self.num_heads, self.head_dim)
|
| 549 |
+
.transpose(0, 1)
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
if saved_state is not None:
|
| 553 |
+
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
|
| 554 |
+
if "prev_key" in saved_state:
|
| 555 |
+
_prev_key = saved_state["prev_key"]
|
| 556 |
+
assert _prev_key is not None
|
| 557 |
+
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
|
| 558 |
+
if static_kv:
|
| 559 |
+
k = prev_key
|
| 560 |
+
else:
|
| 561 |
+
assert k is not None
|
| 562 |
+
k = torch.cat([prev_key, k], dim=1)
|
| 563 |
+
src_len = k.size(1)
|
| 564 |
+
if "prev_value" in saved_state:
|
| 565 |
+
_prev_value = saved_state["prev_value"]
|
| 566 |
+
assert _prev_value is not None
|
| 567 |
+
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
|
| 568 |
+
if static_kv:
|
| 569 |
+
v = prev_value
|
| 570 |
+
else:
|
| 571 |
+
assert v is not None
|
| 572 |
+
v = torch.cat([prev_value, v], dim=1)
|
| 573 |
+
prev_key_padding_mask: Optional[Tensor] = None
|
| 574 |
+
if "prev_key_padding_mask" in saved_state:
|
| 575 |
+
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
|
| 576 |
+
assert k is not None and v is not None
|
| 577 |
+
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
|
| 578 |
+
key_padding_mask=key_padding_mask,
|
| 579 |
+
prev_key_padding_mask=prev_key_padding_mask,
|
| 580 |
+
batch_size=bsz,
|
| 581 |
+
src_len=k.size(1),
|
| 582 |
+
static_kv=static_kv,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
|
| 586 |
+
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
|
| 587 |
+
saved_state["prev_key_padding_mask"] = key_padding_mask
|
| 588 |
+
# In this branch incremental_state is never None
|
| 589 |
+
assert incremental_state is not None
|
| 590 |
+
incremental_state = self._set_input_buffer(incremental_state, saved_state)
|
| 591 |
+
assert k is not None
|
| 592 |
+
assert k.size(1) == src_len
|
| 593 |
+
|
| 594 |
+
# This is part of a workaround to get around fork/join parallelism
|
| 595 |
+
# not supporting Optional types.
|
| 596 |
+
if key_padding_mask is not None and key_padding_mask.dim() == 0:
|
| 597 |
+
key_padding_mask = None
|
| 598 |
+
|
| 599 |
+
if key_padding_mask is not None:
|
| 600 |
+
assert key_padding_mask.size(0) == bsz
|
| 601 |
+
assert key_padding_mask.size(1) == src_len
|
| 602 |
+
|
| 603 |
+
if self.add_zero_attn:
|
| 604 |
+
assert v is not None
|
| 605 |
+
src_len += 1
|
| 606 |
+
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
|
| 607 |
+
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
|
| 608 |
+
if attn_mask is not None:
|
| 609 |
+
attn_mask = torch.cat(
|
| 610 |
+
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
|
| 611 |
+
)
|
| 612 |
+
if key_padding_mask is not None:
|
| 613 |
+
key_padding_mask = torch.cat(
|
| 614 |
+
[
|
| 615 |
+
key_padding_mask,
|
| 616 |
+
torch.zeros(key_padding_mask.size(0), 1).type_as(
|
| 617 |
+
key_padding_mask
|
| 618 |
+
),
|
| 619 |
+
],
|
| 620 |
+
dim=1,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
attn_weights = torch.bmm(q, k.transpose(1, 2))
|
| 624 |
+
attn_weights = (attn_weights - attn_weights.max(dim=-1, keepdim=True)[0]) * alpha
|
| 625 |
+
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
|
| 626 |
+
|
| 627 |
+
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
|
| 628 |
+
|
| 629 |
+
if attn_mask is not None:
|
| 630 |
+
attn_mask = attn_mask.unsqueeze(0)
|
| 631 |
+
attn_weights += attn_mask
|
| 632 |
+
|
| 633 |
+
if key_padding_mask is not None:
|
| 634 |
+
# don't attend to padding symbols
|
| 635 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 636 |
+
if not is_tpu:
|
| 637 |
+
attn_weights = attn_weights.masked_fill(
|
| 638 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
| 639 |
+
float("-inf"),
|
| 640 |
+
)
|
| 641 |
+
else:
|
| 642 |
+
attn_weights = attn_weights.transpose(0, 2)
|
| 643 |
+
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
|
| 644 |
+
attn_weights = attn_weights.transpose(0, 2)
|
| 645 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 646 |
+
|
| 647 |
+
if before_softmax:
|
| 648 |
+
return attn_weights, v, position_bias
|
| 649 |
+
|
| 650 |
+
if position_bias is not None:
|
| 651 |
+
attn_mask_rel_pos = position_bias
|
| 652 |
+
if self.gru_rel_pos == 1:
|
| 653 |
+
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) * alpha / self.scaling
|
| 654 |
+
_B, _H, _L, __ = query_layer.size()
|
| 655 |
+
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
|
| 656 |
+
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
|
| 657 |
+
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
|
| 658 |
+
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, tgt_len, 1) * position_bias
|
| 659 |
+
|
| 660 |
+
attn_mask_rel_pos = attn_mask_rel_pos.view(attn_weights.size())
|
| 661 |
+
|
| 662 |
+
attn_weights = attn_weights + attn_mask_rel_pos
|
| 663 |
+
|
| 664 |
+
attn_weights_float = F.softmax(
|
| 665 |
+
attn_weights, dim=-1
|
| 666 |
+
)
|
| 667 |
+
attn_weights = attn_weights_float.type_as(attn_weights)
|
| 668 |
+
attn_probs = self.dropout_module(attn_weights)
|
| 669 |
+
|
| 670 |
+
assert v is not None
|
| 671 |
+
attn = torch.bmm(attn_probs, v)
|
| 672 |
+
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
| 673 |
+
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
| 674 |
+
attn = self.out_proj(attn)
|
| 675 |
+
attn_weights: Optional[Tensor] = None
|
| 676 |
+
if need_weights:
|
| 677 |
+
attn_weights = attn_weights_float.view(
|
| 678 |
+
bsz, self.num_heads, tgt_len, src_len
|
| 679 |
+
).transpose(1, 0)
|
| 680 |
+
if not need_head_weights:
|
| 681 |
+
# average attention weights over heads
|
| 682 |
+
attn_weights = attn_weights.mean(dim=0)
|
| 683 |
+
|
| 684 |
+
return attn, attn_weights, position_bias
|
| 685 |
+
|
| 686 |
+
@staticmethod
|
| 687 |
+
def _append_prev_key_padding_mask(
|
| 688 |
+
key_padding_mask: Optional[Tensor],
|
| 689 |
+
prev_key_padding_mask: Optional[Tensor],
|
| 690 |
+
batch_size: int,
|
| 691 |
+
src_len: int,
|
| 692 |
+
static_kv: bool,
|
| 693 |
+
) -> Optional[Tensor]:
|
| 694 |
+
# saved key padding masks have shape (bsz, seq_len)
|
| 695 |
+
if prev_key_padding_mask is not None and static_kv:
|
| 696 |
+
new_key_padding_mask = prev_key_padding_mask
|
| 697 |
+
elif prev_key_padding_mask is not None and key_padding_mask is not None:
|
| 698 |
+
new_key_padding_mask = torch.cat(
|
| 699 |
+
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
|
| 700 |
+
)
|
| 701 |
+
# During incremental decoding, as the padding token enters and
|
| 702 |
+
# leaves the frame, there will be a time when prev or current
|
| 703 |
+
# is None
|
| 704 |
+
elif prev_key_padding_mask is not None:
|
| 705 |
+
if src_len > prev_key_padding_mask.size(1):
|
| 706 |
+
filler = torch.zeros(
|
| 707 |
+
(batch_size, src_len - prev_key_padding_mask.size(1)),
|
| 708 |
+
device=prev_key_padding_mask.device,
|
| 709 |
+
)
|
| 710 |
+
new_key_padding_mask = torch.cat(
|
| 711 |
+
[prev_key_padding_mask.float(), filler.float()], dim=1
|
| 712 |
+
)
|
| 713 |
+
else:
|
| 714 |
+
new_key_padding_mask = prev_key_padding_mask.float()
|
| 715 |
+
elif key_padding_mask is not None:
|
| 716 |
+
if src_len > key_padding_mask.size(1):
|
| 717 |
+
filler = torch.zeros(
|
| 718 |
+
(batch_size, src_len - key_padding_mask.size(1)),
|
| 719 |
+
device=key_padding_mask.device,
|
| 720 |
+
)
|
| 721 |
+
new_key_padding_mask = torch.cat(
|
| 722 |
+
[filler.float(), key_padding_mask.float()], dim=1
|
| 723 |
+
)
|
| 724 |
+
else:
|
| 725 |
+
new_key_padding_mask = key_padding_mask.float()
|
| 726 |
+
else:
|
| 727 |
+
new_key_padding_mask = prev_key_padding_mask
|
| 728 |
+
return new_key_padding_mask
|
| 729 |
+
|
| 730 |
+
def _get_input_buffer(
|
| 731 |
+
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
|
| 732 |
+
) -> Dict[str, Optional[Tensor]]:
|
| 733 |
+
result = self.get_incremental_state(incremental_state, "attn_state")
|
| 734 |
+
if result is not None:
|
| 735 |
+
return result
|
| 736 |
+
else:
|
| 737 |
+
empty_result: Dict[str, Optional[Tensor]] = {}
|
| 738 |
+
return empty_result
|
| 739 |
+
|
| 740 |
+
def _set_input_buffer(
|
| 741 |
+
self,
|
| 742 |
+
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
|
| 743 |
+
buffer: Dict[str, Optional[Tensor]],
|
| 744 |
+
):
|
| 745 |
+
return self.set_incremental_state(incremental_state, "attn_state", buffer)
|
| 746 |
+
|
| 747 |
+
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
|
| 748 |
+
return attn_weights
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
def init_bert_params(module):
|
| 752 |
+
"""
|
| 753 |
+
Initialize the weights specific to the BERT Model.
|
| 754 |
+
This overrides the default initializations depending on the specified arguments.
|
| 755 |
+
1. If normal_init_linear_weights is set then weights of linear
|
| 756 |
+
layer will be initialized using the normal distribution and
|
| 757 |
+
bais will be set to the specified value.
|
| 758 |
+
2. If normal_init_embed_weights is set then weights of embedding
|
| 759 |
+
layer will be initialized using the normal distribution.
|
| 760 |
+
3. If normal_init_proj_weights is set then weights of
|
| 761 |
+
in_project_weight for MultiHeadAttention initialized using
|
| 762 |
+
the normal distribution (to be validated).
|
| 763 |
+
"""
|
| 764 |
+
|
| 765 |
+
def normal_(data):
|
| 766 |
+
# with FSDP, module params will be on CUDA, so we cast them back to CPU
|
| 767 |
+
# so that the RNG is consistent with and without FSDP
|
| 768 |
+
data.copy_(
|
| 769 |
+
data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
if isinstance(module, nn.Linear):
|
| 773 |
+
normal_(module.weight.data)
|
| 774 |
+
if module.bias is not None:
|
| 775 |
+
module.bias.data.zero_()
|
| 776 |
+
if isinstance(module, nn.Embedding):
|
| 777 |
+
normal_(module.weight.data)
|
| 778 |
+
if module.padding_idx is not None:
|
| 779 |
+
module.weight.data[module.padding_idx].zero_()
|
| 780 |
+
if isinstance(module, MultiheadAttention):
|
| 781 |
+
normal_(module.q_proj.weight.data)
|
| 782 |
+
normal_(module.k_proj.weight.data)
|
| 783 |
+
normal_(module.v_proj.weight.data)
|
beats/modules.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beats
|
| 4 |
+
# Copyright (c) 2022 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on fairseq code bases
|
| 7 |
+
# https://github.com/pytorch/fairseq
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
import warnings
|
| 12 |
+
import torch
|
| 13 |
+
from torch import Tensor, nn
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class GradMultiply(torch.autograd.Function):
|
| 18 |
+
@staticmethod
|
| 19 |
+
def forward(ctx, x, scale):
|
| 20 |
+
ctx.scale = scale
|
| 21 |
+
res = x.new(x)
|
| 22 |
+
return res
|
| 23 |
+
|
| 24 |
+
@staticmethod
|
| 25 |
+
def backward(ctx, grad):
|
| 26 |
+
return grad * ctx.scale, None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class SamePad(nn.Module):
|
| 30 |
+
def __init__(self, kernel_size, causal=False):
|
| 31 |
+
super().__init__()
|
| 32 |
+
if causal:
|
| 33 |
+
self.remove = kernel_size - 1
|
| 34 |
+
else:
|
| 35 |
+
self.remove = 1 if kernel_size % 2 == 0 else 0
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
if self.remove > 0:
|
| 39 |
+
x = x[:, :, : -self.remove]
|
| 40 |
+
return x
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class Swish(nn.Module):
|
| 44 |
+
def __init__(self):
|
| 45 |
+
super(Swish, self).__init__()
|
| 46 |
+
self.act = torch.nn.Sigmoid()
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
return x * self.act(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class GLU_Linear(nn.Module):
|
| 53 |
+
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
|
| 54 |
+
super(GLU_Linear, self).__init__()
|
| 55 |
+
|
| 56 |
+
self.glu_type = glu_type
|
| 57 |
+
self.output_dim = output_dim
|
| 58 |
+
|
| 59 |
+
if glu_type == "sigmoid":
|
| 60 |
+
self.glu_act = torch.nn.Sigmoid()
|
| 61 |
+
elif glu_type == "swish":
|
| 62 |
+
self.glu_act = Swish()
|
| 63 |
+
elif glu_type == "relu":
|
| 64 |
+
self.glu_act = torch.nn.ReLU()
|
| 65 |
+
elif glu_type == "gelu":
|
| 66 |
+
self.glu_act = torch.nn.GELU()
|
| 67 |
+
|
| 68 |
+
if bias_in_glu:
|
| 69 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, True)
|
| 70 |
+
else:
|
| 71 |
+
self.linear = nn.Linear(input_dim, output_dim * 2, False)
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
# to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
|
| 75 |
+
x = self.linear(x)
|
| 76 |
+
|
| 77 |
+
if self.glu_type == "bilinear":
|
| 78 |
+
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
|
| 79 |
+
else:
|
| 80 |
+
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
|
| 81 |
+
|
| 82 |
+
return x
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def gelu_accurate(x):
|
| 86 |
+
if not hasattr(gelu_accurate, "_a"):
|
| 87 |
+
gelu_accurate._a = math.sqrt(2 / math.pi)
|
| 88 |
+
return (
|
| 89 |
+
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def gelu(x: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
return torch.nn.functional.gelu(x.float()).type_as(x)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def get_activation_fn(activation: str):
|
| 98 |
+
"""Returns the activation function corresponding to `activation`"""
|
| 99 |
+
|
| 100 |
+
if activation == "relu":
|
| 101 |
+
return F.relu
|
| 102 |
+
elif activation == "gelu":
|
| 103 |
+
return gelu
|
| 104 |
+
elif activation == "gelu_fast":
|
| 105 |
+
warnings.warn(
|
| 106 |
+
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
|
| 107 |
+
)
|
| 108 |
+
return gelu_accurate
|
| 109 |
+
elif activation == "gelu_accurate":
|
| 110 |
+
return gelu_accurate
|
| 111 |
+
elif activation == "tanh":
|
| 112 |
+
return torch.tanh
|
| 113 |
+
elif activation == "linear":
|
| 114 |
+
return lambda x: x
|
| 115 |
+
elif activation == "glu":
|
| 116 |
+
return lambda x: x
|
| 117 |
+
else:
|
| 118 |
+
raise RuntimeError("--activation-fn {} not supported".format(activation))
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def quant_noise(module, p, block_size):
|
| 122 |
+
"""
|
| 123 |
+
Wraps modules and applies quantization noise to the weights for
|
| 124 |
+
subsequent quantization with Iterative Product Quantization as
|
| 125 |
+
described in "Training with Quantization Noise for Extreme Model Compression"
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
- module: nn.Module
|
| 129 |
+
- p: amount of Quantization Noise
|
| 130 |
+
- block_size: size of the blocks for subsequent quantization with iPQ
|
| 131 |
+
|
| 132 |
+
Remarks:
|
| 133 |
+
- Module weights must have the right sizes wrt the block size
|
| 134 |
+
- Only Linear, Embedding and Conv2d modules are supported for the moment
|
| 135 |
+
- For more detail on how to quantize by blocks with convolutional weights,
|
| 136 |
+
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
|
| 137 |
+
- We implement the simplest form of noise here as stated in the paper
|
| 138 |
+
which consists in randomly dropping blocks
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
# if no quantization noise, don't register hook
|
| 142 |
+
if p <= 0:
|
| 143 |
+
return module
|
| 144 |
+
|
| 145 |
+
# supported modules
|
| 146 |
+
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
|
| 147 |
+
|
| 148 |
+
# test whether module.weight has the right sizes wrt block_size
|
| 149 |
+
is_conv = module.weight.ndim == 4
|
| 150 |
+
|
| 151 |
+
# 2D matrix
|
| 152 |
+
if not is_conv:
|
| 153 |
+
assert (
|
| 154 |
+
module.weight.size(1) % block_size == 0
|
| 155 |
+
), "Input features must be a multiple of block sizes"
|
| 156 |
+
|
| 157 |
+
# 4D matrix
|
| 158 |
+
else:
|
| 159 |
+
# 1x1 convolutions
|
| 160 |
+
if module.kernel_size == (1, 1):
|
| 161 |
+
assert (
|
| 162 |
+
module.in_channels % block_size == 0
|
| 163 |
+
), "Input channels must be a multiple of block sizes"
|
| 164 |
+
# regular convolutions
|
| 165 |
+
else:
|
| 166 |
+
k = module.kernel_size[0] * module.kernel_size[1]
|
| 167 |
+
assert k % block_size == 0, "Kernel size must be a multiple of block size"
|
| 168 |
+
|
| 169 |
+
def _forward_pre_hook(mod, input):
|
| 170 |
+
# no noise for evaluation
|
| 171 |
+
if mod.training:
|
| 172 |
+
if not is_conv:
|
| 173 |
+
# gather weight and sizes
|
| 174 |
+
weight = mod.weight
|
| 175 |
+
in_features = weight.size(1)
|
| 176 |
+
out_features = weight.size(0)
|
| 177 |
+
|
| 178 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
| 179 |
+
mask = torch.zeros(
|
| 180 |
+
in_features // block_size * out_features, device=weight.device
|
| 181 |
+
)
|
| 182 |
+
mask.bernoulli_(p)
|
| 183 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
|
| 184 |
+
|
| 185 |
+
else:
|
| 186 |
+
# gather weight and sizes
|
| 187 |
+
weight = mod.weight
|
| 188 |
+
in_channels = mod.in_channels
|
| 189 |
+
out_channels = mod.out_channels
|
| 190 |
+
|
| 191 |
+
# split weight matrix into blocks and randomly drop selected blocks
|
| 192 |
+
if mod.kernel_size == (1, 1):
|
| 193 |
+
mask = torch.zeros(
|
| 194 |
+
int(in_channels // block_size * out_channels),
|
| 195 |
+
device=weight.device,
|
| 196 |
+
)
|
| 197 |
+
mask.bernoulli_(p)
|
| 198 |
+
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
|
| 199 |
+
else:
|
| 200 |
+
mask = torch.zeros(
|
| 201 |
+
weight.size(0), weight.size(1), device=weight.device
|
| 202 |
+
)
|
| 203 |
+
mask.bernoulli_(p)
|
| 204 |
+
mask = (
|
| 205 |
+
mask.unsqueeze(2)
|
| 206 |
+
.unsqueeze(3)
|
| 207 |
+
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# scale weights and apply mask
|
| 211 |
+
mask = mask.to(
|
| 212 |
+
torch.bool
|
| 213 |
+
) # x.bool() is not currently supported in TorchScript
|
| 214 |
+
s = 1 / (1 - p)
|
| 215 |
+
mod.weight.data = s * weight.masked_fill(mask, 0)
|
| 216 |
+
|
| 217 |
+
module.register_forward_pre_hook(_forward_pre_hook)
|
| 218 |
+
return module
|
beats/quantizer.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
|
| 3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beats
|
| 4 |
+
# Copyright (c) 2022 Microsoft
|
| 5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 6 |
+
# Based on VQGAN code bases
|
| 7 |
+
# https://github.com/CompVis/taming-transformers
|
| 8 |
+
# --------------------------------------------------------'
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch.distributed as distributed
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
from einops import rearrange, repeat
|
| 17 |
+
except ImportError:
|
| 18 |
+
pass
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def l2norm(t):
|
| 22 |
+
return F.normalize(t, p=2, dim=-1)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def ema_inplace(moving_avg, new, decay):
|
| 26 |
+
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def sample_vectors(samples, num):
|
| 30 |
+
num_samples, device = samples.shape[0], samples.device
|
| 31 |
+
|
| 32 |
+
if num_samples >= num:
|
| 33 |
+
indices = torch.randperm(num_samples, device=device)[:num]
|
| 34 |
+
else:
|
| 35 |
+
indices = torch.randint(0, num_samples, (num,), device=device)
|
| 36 |
+
|
| 37 |
+
return samples[indices]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False):
|
| 41 |
+
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
|
| 42 |
+
|
| 43 |
+
means = sample_vectors(samples, num_clusters)
|
| 44 |
+
|
| 45 |
+
for _ in range(num_iters):
|
| 46 |
+
if use_cosine_sim:
|
| 47 |
+
dists = samples @ means.t()
|
| 48 |
+
else:
|
| 49 |
+
diffs = rearrange(samples, 'n d -> n () d') \
|
| 50 |
+
- rearrange(means, 'c d -> () c d')
|
| 51 |
+
dists = -(diffs ** 2).sum(dim=-1)
|
| 52 |
+
|
| 53 |
+
buckets = dists.max(dim=-1).indices
|
| 54 |
+
bins = torch.bincount(buckets, minlength=num_clusters)
|
| 55 |
+
zero_mask = bins == 0
|
| 56 |
+
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
| 57 |
+
|
| 58 |
+
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
|
| 59 |
+
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d=dim), samples)
|
| 60 |
+
new_means = new_means / bins_min_clamped[..., None]
|
| 61 |
+
|
| 62 |
+
if use_cosine_sim:
|
| 63 |
+
new_means = l2norm(new_means)
|
| 64 |
+
|
| 65 |
+
means = torch.where(zero_mask[..., None], means, new_means)
|
| 66 |
+
|
| 67 |
+
return means, bins
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class EmbeddingEMA(nn.Module):
|
| 71 |
+
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.num_tokens = num_tokens
|
| 74 |
+
self.codebook_dim = codebook_dim
|
| 75 |
+
self.decay = decay
|
| 76 |
+
self.eps = eps
|
| 77 |
+
if codebook_init_path == '':
|
| 78 |
+
if not kmeans_init:
|
| 79 |
+
weight = torch.randn(num_tokens, codebook_dim)
|
| 80 |
+
weight = l2norm(weight)
|
| 81 |
+
else:
|
| 82 |
+
weight = torch.zeros(num_tokens, codebook_dim)
|
| 83 |
+
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
| 84 |
+
else:
|
| 85 |
+
print(f"load init codebook weight from {codebook_init_path}")
|
| 86 |
+
codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu')
|
| 87 |
+
weight = codebook_ckpt_weight.clone()
|
| 88 |
+
self.register_buffer('initted', torch.Tensor([True]))
|
| 89 |
+
|
| 90 |
+
self.weight = nn.Parameter(weight, requires_grad=False)
|
| 91 |
+
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
|
| 92 |
+
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
|
| 93 |
+
# self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
| 94 |
+
self.update = True
|
| 95 |
+
|
| 96 |
+
@torch.jit.ignore
|
| 97 |
+
def init_embed_(self, data):
|
| 98 |
+
if self.initted:
|
| 99 |
+
return
|
| 100 |
+
print("Performing Kemans init for codebook")
|
| 101 |
+
embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim=True)
|
| 102 |
+
self.weight.data.copy_(embed)
|
| 103 |
+
self.cluster_size.data.copy_(cluster_size)
|
| 104 |
+
self.initted.data.copy_(torch.Tensor([True]))
|
| 105 |
+
|
| 106 |
+
def forward(self, embed_id):
|
| 107 |
+
return F.embedding(embed_id, self.weight)
|
| 108 |
+
|
| 109 |
+
def cluster_size_ema_update(self, new_cluster_size):
|
| 110 |
+
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
|
| 111 |
+
|
| 112 |
+
def embed_avg_ema_update(self, new_embed_avg):
|
| 113 |
+
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
|
| 114 |
+
|
| 115 |
+
def weight_update(self, num_tokens):
|
| 116 |
+
n = self.cluster_size.sum()
|
| 117 |
+
smoothed_cluster_size = (
|
| 118 |
+
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
|
| 119 |
+
)
|
| 120 |
+
# normalize embedding average with smoothed cluster size
|
| 121 |
+
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
|
| 122 |
+
# embed_normalized = l2norm(self.embed_avg / smoothed_cluster_size.unsqueeze(1))
|
| 123 |
+
self.weight.data.copy_(embed_normalized)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def norm_ema_inplace(moving_avg, new, decay):
|
| 127 |
+
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
| 128 |
+
moving_avg.data.copy_(l2norm(moving_avg.data))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class NormEMAVectorQuantizer(nn.Module):
|
| 132 |
+
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
|
| 133 |
+
statistic_code_usage=True, kmeans_init=False, codebook_init_path=''):
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.codebook_dim = embedding_dim
|
| 136 |
+
self.num_tokens = n_embed
|
| 137 |
+
self.beta = beta
|
| 138 |
+
self.decay = decay
|
| 139 |
+
|
| 140 |
+
# learnable = True if orthogonal_reg_weight > 0 else False
|
| 141 |
+
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path)
|
| 142 |
+
|
| 143 |
+
self.statistic_code_usage = statistic_code_usage
|
| 144 |
+
if statistic_code_usage:
|
| 145 |
+
self.register_buffer('cluster_size', torch.zeros(n_embed))
|
| 146 |
+
if distributed.is_available() and distributed.is_initialized():
|
| 147 |
+
print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!")
|
| 148 |
+
self.all_reduce_fn = distributed.all_reduce
|
| 149 |
+
else:
|
| 150 |
+
self.all_reduce_fn = nn.Identity()
|
| 151 |
+
|
| 152 |
+
def reset_cluster_size(self, device):
|
| 153 |
+
if self.statistic_code_usage:
|
| 154 |
+
self.register_buffer('cluster_size', torch.zeros(self.num_tokens))
|
| 155 |
+
self.cluster_size = self.cluster_size.to(device)
|
| 156 |
+
|
| 157 |
+
def forward(self, z):
|
| 158 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 159 |
+
# z, 'b c h w -> b h w c'
|
| 160 |
+
# z = rearrange(z, 'b c h w -> b h w c')
|
| 161 |
+
# z = z.transpose(1, 2)
|
| 162 |
+
z = l2norm(z)
|
| 163 |
+
z_flattened = z.reshape(-1, self.codebook_dim)
|
| 164 |
+
|
| 165 |
+
self.embedding.init_embed_(z_flattened)
|
| 166 |
+
|
| 167 |
+
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
|
| 168 |
+
self.embedding.weight.pow(2).sum(dim=1) - 2 * \
|
| 169 |
+
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
|
| 170 |
+
|
| 171 |
+
encoding_indices = torch.argmin(d, dim=1)
|
| 172 |
+
|
| 173 |
+
z_q = self.embedding(encoding_indices).view(z.shape)
|
| 174 |
+
|
| 175 |
+
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
|
| 176 |
+
|
| 177 |
+
if not self.training:
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
cluster_size = encodings.sum(0)
|
| 180 |
+
self.all_reduce_fn(cluster_size)
|
| 181 |
+
ema_inplace(self.cluster_size, cluster_size, self.decay)
|
| 182 |
+
|
| 183 |
+
if self.training and self.embedding.update:
|
| 184 |
+
# EMA cluster size
|
| 185 |
+
|
| 186 |
+
bins = encodings.sum(0)
|
| 187 |
+
self.all_reduce_fn(bins)
|
| 188 |
+
|
| 189 |
+
# self.embedding.cluster_size_ema_update(bins)
|
| 190 |
+
ema_inplace(self.cluster_size, bins, self.decay)
|
| 191 |
+
|
| 192 |
+
zero_mask = (bins == 0)
|
| 193 |
+
bins = bins.masked_fill(zero_mask, 1.)
|
| 194 |
+
|
| 195 |
+
embed_sum = z_flattened.t() @ encodings
|
| 196 |
+
self.all_reduce_fn(embed_sum)
|
| 197 |
+
|
| 198 |
+
embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
|
| 199 |
+
embed_normalized = l2norm(embed_normalized)
|
| 200 |
+
|
| 201 |
+
embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight,
|
| 202 |
+
embed_normalized)
|
| 203 |
+
norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay)
|
| 204 |
+
|
| 205 |
+
# compute loss for embedding
|
| 206 |
+
loss = self.beta * F.mse_loss(z_q.detach(), z)
|
| 207 |
+
|
| 208 |
+
# preserve gradients
|
| 209 |
+
z_q = z + (z_q - z).detach()
|
| 210 |
+
|
| 211 |
+
# reshape back to match original input shape
|
| 212 |
+
# z_q, 'b h w c -> b c h w'
|
| 213 |
+
# z_q = rearrange(z_q, 'b h w c -> b c h w')
|
| 214 |
+
# z_q = z_q.transpose(1, 2)
|
| 215 |
+
return z_q, loss, encoding_indices
|