--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: examplej.skops widget: structuredData: 'Unnamed: 32': - .nan - .nan - .nan area_mean: - 481.9 - 1130.0 - 748.9 area_se: - 30.29 - 96.05 - 48.31 area_worst: - 677.9 - 1866.0 - 1156.0 compactness_mean: - 0.1058 - 0.1029 - 0.1223 compactness_se: - 0.01911 - 0.01652 - 0.01484 compactness_worst: - 0.2378 - 0.2336 - 0.2394 concave points_mean: - 0.03821 - 0.07951 - 0.08087 concave points_se: - 0.01037 - 0.0137 - 0.01093 concave points_worst: - 0.1015 - 0.1789 - 0.1514 concavity_mean: - 0.08005 - 0.108 - 0.1466 concavity_se: - 0.02701 - 0.02269 - 0.02813 concavity_worst: - 0.2671 - 0.2687 - 0.3791 fractal_dimension_mean: - 0.06373 - 0.05461 - 0.05796 fractal_dimension_se: - 0.003586 - 0.001698 - 0.002461 fractal_dimension_worst: - 0.0875 - 0.06589 - 0.08019 id: - 87930 - 859575 - 8670 perimeter_mean: - 81.09 - 123.6 - 101.7 perimeter_se: - 2.497 - 5.486 - 3.094 perimeter_worst: - 96.05 - 165.9 - 124.9 radius_mean: - 12.47 - 18.94 - 15.46 radius_se: - 0.3961 - 0.7888 - 0.4743 radius_worst: - 14.97 - 24.86 - 19.26 smoothness_mean: - 0.09965 - 0.09009 - 0.1092 smoothness_se: - 0.006953 - 0.004444 - 0.00624 smoothness_worst: - 0.1426 - 0.1193 - 0.1546 symmetry_mean: - 0.1925 - 0.1582 - 0.1931 symmetry_se: - 0.01782 - 0.01386 - 0.01397 symmetry_worst: - 0.3014 - 0.2551 - 0.2837 texture_mean: - 18.6 - 21.31 - 19.48 texture_se: - 1.044 - 0.7975 - 0.7859 texture_worst: - 24.64 - 26.58 - 26.0 --- # Model description [More Information Needed] ## Intended uses & limitations This model is not ready to be used in production (J). ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |------------------------------|-----------------------------------------------------------------------------------------------| | memory | | | steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] | | verbose | False | | imputer | SimpleImputer() | | scaler | StandardScaler() | | model | LogisticRegression() | | imputer__add_indicator | False | | imputer__copy | True | | imputer__fill_value | | | imputer__keep_empty_features | False | | imputer__missing_values | nan | | imputer__strategy | mean | | imputer__verbose | deprecated | | scaler__copy | True | | scaler__with_mean | True | | scaler__with_std | True | | model__C | 1.0 | | model__class_weight | | | model__dual | False | | model__fit_intercept | True | | model__intercept_scaling | 1 | | model__l1_ratio | | | model__max_iter | 100 | | model__multi_class | auto | | model__n_jobs | | | model__penalty | l2 | | model__random_state | | | model__solver | lbfgs | | model__tol | 0.0001 | | model__verbose | 0 | | model__warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-21" type="checkbox" ><label for="sk-estimator-id-21" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-22" type="checkbox" ><label for="sk-estimator-id-22" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" ><label for="sk-estimator-id-23" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div> ## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```