Benchmark-Single / utils.py
Junyin's picture
Add files using upload-large-folder tool
811e03d verified
import json
import logging
import os
import random
import datetime
import numpy as np
import torch
from torch.utils.data import ConcatDataset
from data import SeqRecDataset, ItemFeatDataset, ItemSearchDataset, FusionSeqRecDataset, SeqRecTestDataset, PreferenceObtainDataset
from data_finetune import SeqRecFinetune, ItemFeatFinetune, ItemSearchFinetune, FusionSeqRecFinetune, PreferenceObtainFinetune
def parse_evaluate_args(parser):
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--base_model", type=str, default="../llama-7b/", help="basic model path")
parser.add_argument("--output_dir", type=str, default="./ckpt/", help="The output directory")
parser.add_argument("--data_path", type=str, default="",
help="data directory")
parser.add_argument("--tasks", type=str,
default='seqrec,itemsearch,inters2title,inters2description,preferenceobtain,item2index,index2item,intertitles2item,query2item',
help="Downstream tasks, separate by comma")
parser.add_argument("--train_data_sample_num", type=str, default="0,0,0,0,0,0,0,0,0",
help="the number of sampling data for each task")
parser.add_argument("--dataset", type=str, default="Instruments", help="Dataset name")
parser.add_argument("--index_file", type=str, default=".index.json", help="the item indices file")
parser.add_argument("--dataloader_num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--dataloader_prefetch_factor", type=int, default=2, help="dataloader prefetch_factor")
# arguments related to sequential task
parser.add_argument("--max_his_len", type=int, default=20,
help="the max number of items in history sequence, -1 means no limit")
parser.add_argument("--add_prefix", action="store_true", default=False,
help="whether add sequential prefix in history")
parser.add_argument("--his_sep", type=str, default=", ", help="The separator used for history")
parser.add_argument("--only_train_response", action="store_true", default=False,
help="whether only train on responses")
parser.add_argument("--train_prompt_sample_num", type=str, default="1,1,1,1,1,1,1,1,1",
help="the number of sampling prompts for each task")
parser.add_argument("--valid_prompt_id", type=int, default=0,
help="The prompt used for validation")
parser.add_argument("--sample_valid", action="store_true", default=True,
help="use sampled prompt for validation")
parser.add_argument("--valid_prompt_sample_num", type=int, default=2,
help="the number of sampling validation sequential recommendation prompts")
parser.add_argument("--ckpt_path", type=str, default="", help="The checkpoint path")
parser.add_argument("--lora", action="store_true", default=False)
parser.add_argument("--filter_items", action="store_true", default=False,
help="whether filter illegal items")
parser.add_argument("--results_file", type=str, default="./results/test-ddp.json", help="result output path")
parser.add_argument("--test_batch_size", type=int, default=1)
parser.add_argument("--num_beams", type=int, default=20)
parser.add_argument("--sample_num", type=int, default=-1,
help="test sample number, -1 represents using all test data")
parser.add_argument("--gpu_id", type=int, default=0,
help="GPU ID when testing with single GPU")
parser.add_argument("--test_prompt_ids", type=str, default="0",
help="test prompt ids, separate by comma. 'all' represents using all")
parser.add_argument("--metrics", type=str, default="hit@1,hit@5,hit@10,ndcg@5,ndcg@10",
help="test metrics, separate by comma")
parser.add_argument("--test_task", type=str, default="SeqRec")
return parser
def parse_finetune_args(parser):
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--base_model", type=str, default="../llama-7b/", help="basic model path")
parser.add_argument("--output_dir", type=str, default="./ckpt/", help="The output directory")
parser.add_argument("--data_path", type=str, default="",
help="data directory")
parser.add_argument("--tasks", type=str,
default='seqrec,itemsearch,inters2title,inters2description,preferenceobtain,item2index,index2item,intertitles2item,query2item',
help="Downstream tasks, separate by comma")
parser.add_argument("--train_data_sample_num", type=str, default="0,0,0,0,0,0,0,0,0",
help="the number of sampling data for each task")
parser.add_argument("--dataset", type=str, default="Instruments", help="Dataset name")
parser.add_argument("--index_file", type=str, default=".index.json", help="the item indices file")
parser.add_argument("--dataloader_num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--dataloader_prefetch_factor", type=int, default=2, help="dataloader prefetch_factor")
parser.add_argument("--max_his_len", type=int, default=20,
help="the max number of items in history sequence, -1 means no limit")
parser.add_argument("--add_prefix", action="store_true", default=False,
help="whether add sequential prefix in history")
parser.add_argument("--his_sep", type=str, default=", ", help="The separator used for history")
parser.add_argument("--only_train_response", action="store_true", default=False,
help="whether only train on responses")
parser.add_argument("--train_prompt_sample_num", type=str, default="1,1,1,1,1,1,1,1,1",
help="the number of sampling prompts for each task")
parser.add_argument("--valid_prompt_id", type=int, default=0,
help="The prompt used for validation")
parser.add_argument("--sample_valid", action="store_true", default=True,
help="use sampled prompt for validation")
parser.add_argument("--valid_prompt_sample_num", type=int, default=2,
help="the number of sampling validation sequential recommendation prompts")
parser.add_argument("--optim", type=str, default="adamw_torch", help='The name of the optimizer')
parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--per_device_batch_size", type=int, default=8)
parser.add_argument("--gradient_accumulation_steps", type=int, default=2)
parser.add_argument("--logging_step", type=int, default=10)
parser.add_argument("--model_max_length", type=int, default=2048)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--lora_r", type=int, default=8)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str,
default="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj", help="separate by comma")
parser.add_argument("--lora_modules_to_save", type=str,
default="embed_tokens,lm_head", help="separate by comma")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="either training checkpoint or final adapter")
parser.add_argument("--warmup_ratio", type=float, default=0.01)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--save_and_eval_strategy", type=str, default="epoch")
parser.add_argument("--save_and_eval_steps", type=int, default=1000)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--deepspeed", type=str, default="./config/ds_z3_bf16.json")
parser.add_argument("--remove_unused_columns", action="store_true", default=False, help='if remove unused columns')
parser.add_argument("--re_index", type = int, default = 0)
parser.add_argument("--ckpt_path", type=str, default="")
return parser
def load_finetune_datasets(args):
tasks = args.tasks.split(",")
train_prompt_sample_num = [int(_) for _ in args.train_prompt_sample_num.split(",")]
assert len(tasks) == len(train_prompt_sample_num), "prompt sample number does not match task number"
train_data_sample_num = [int(_) for _ in args.train_data_sample_num.split(",")]
assert len(tasks) == len(train_data_sample_num), "data sample number does not match task number"
train_datasets = []
for task, prompt_sample_num,data_sample_num in zip(tasks,train_prompt_sample_num,train_data_sample_num):
if task.lower() == "seqrec":
dataset = SeqRecFinetune(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "item2index" or task.lower() == "index2item":
dataset = ItemFeatFinetune(args, task=task.lower(), prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "fusionseqrec":
dataset = FusionSeqRecFinetune(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "itemsearch":
dataset = ItemSearchFinetune(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "preferenceobtain":
dataset = PreferenceObtainFinetune(args, prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
else:
raise NotImplementedError
train_datasets.append(dataset)
train_data = ConcatDataset(train_datasets)
valid_data = SeqRecFinetune(args, "valid", args.valid_prompt_sample_num)
return train_data, valid_data
# def load_finetune_datasets(args):
# tasks = args.tasks.split(",")
# train_prompt_sample_num = [int(_) for _ in args.train_prompt_sample_num.split(",")]
# assert len(tasks) == len(train_prompt_sample_num), "prompt sample number does not match task number"
# train_data_sample_num = [int(_) for _ in args.train_data_sample_num.split(",")]
# assert len(tasks) == len(train_data_sample_num), "data sample number does not match task number"
# train_datasets = []
# for task, prompt_sample_num,data_sample_num in zip(tasks,train_prompt_sample_num,train_data_sample_num):
# if task.lower() == "seqrec":
# dataset = SeqRecFinetune(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
# elif task.lower() == "item2index" or task.lower() == "index2item":
# dataset = ItemFeatFinetune(args, task=task.lower(), prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
# elif task.lower() in ["inters2title", "inters2description", "intertitles2item"]:
# dataset = FusionSeqRecFinetune(args, task=task.lower(), mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
# elif task.lower() in ["itemsearch", "query2item"]:
# dataset = ItemSearchFinetune(args, task=task.lower(),mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
# elif task.lower() == "preferenceobtain":
# dataset = PreferenceObtainFinetune(args, prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
# else:
# raise NotImplementedError
# train_datasets.append(dataset)
# train_data = ConcatDataset(train_datasets)
# valid_data = SeqRecDataset(args,"valid",args.valid_prompt_sample_num)
# return train_data, valid_data
def parse_global_args(parser):
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--base_model", type=str,
default="../llama-7b/",
help="basic model path")
parser.add_argument("--output_dir", type=str,
default="./ckpt/",
help="The output directory")
return parser
def parse_dataset_args(parser):
parser.add_argument("--data_path", type=str, default="",
help="data directory")
parser.add_argument("--tasks", type=str,
default='seqrec,itemsearch,inters2title,inters2description,preferenceobtain,item2index,index2item,intertitles2item,query2item',
help="Downstream tasks, separate by comma")
parser.add_argument("--train_data_sample_num", type=str, default="0,0,0,0,0,0,0,0,0",
help="the number of sampling data for each task")
parser.add_argument("--dataset", type=str, default="Instruments", help="Dataset name")
parser.add_argument("--index_file", type=str, default=".index.json", help="the item indices file")
parser.add_argument("--dataloader_num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--dataloader_prefetch_factor", type=int, default=2, help="dataloader prefetch_factor")
# arguments related to sequential task
parser.add_argument("--max_his_len", type=int, default=20,
help="the max number of items in history sequence, -1 means no limit")
parser.add_argument("--add_prefix", action="store_true", default=False,
help="whether add sequential prefix in history")
parser.add_argument("--his_sep", type=str, default=", ", help="The separator used for history")
parser.add_argument("--only_train_response", action="store_true", default=False,
help="whether only train on responses")
parser.add_argument("--train_prompt_sample_num", type=str, default="1,1,1,1,1,1,1,1,1",
help="the number of sampling prompts for each task")
parser.add_argument("--valid_prompt_id", type=int, default=0,
help="The prompt used for validation")
parser.add_argument("--sample_valid", action="store_true", default=True,
help="use sampled prompt for validation")
parser.add_argument("--valid_prompt_sample_num", type=int, default=2,
help="the number of sampling validation sequential recommendation prompts")
return parser
def parse_train_args(parser):
parser.add_argument("--optim", type=str, default="adamw_torch", help='The name of the optimizer')
parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--per_device_batch_size", type=int, default=8)
parser.add_argument("--gradient_accumulation_steps", type=int, default=2)
parser.add_argument("--logging_step", type=int, default=10)
parser.add_argument("--model_max_length", type=int, default=2048)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--lora_r", type=int, default=8)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str,
default="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj", help="separate by comma")
parser.add_argument("--lora_modules_to_save", type=str,
default="embed_tokens,lm_head", help="separate by comma")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="either training checkpoint or final adapter")
parser.add_argument("--warmup_ratio", type=float, default=0.01)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--save_and_eval_strategy", type=str, default="epoch")
parser.add_argument("--save_and_eval_steps", type=int, default=1000)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--deepspeed", type=str, default="./config/ds_z3_bf16.json")
parser.add_argument("--remove_unused_columns", action="store_true", default=False, help='if remove unused columns')
return parser
def parse_rqvae_args(parser):
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
# parser.add_argument('--epochs', type=int, default=5000, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=1024, help='batch size')
parser.add_argument('--num_workers', type=int, default=4, )
parser.add_argument('--eval_step', type=int, default=50, help='eval step')
parser.add_argument('--learner', type=str, default="AdamW", help='optimizer')
# parser.add_argument("--data_path", type=str,
# default="../data/Games/Games.emb-llama-td.npy",
# help="Input data path.")
# parser.add_argument('--weight_decay', type=float, default=1e-4, help='l2 regularization weight')
parser.add_argument("--dropout_prob", type=float, default=0.0, help="dropout ratio")
parser.add_argument("--bn", type=bool, default=False, help="use bn or not")
parser.add_argument("--loss_type", type=str, default="mse", help="loss_type")
parser.add_argument("--kmeans_init", type=bool, default=False, help="use kmeans_init or not")
parser.add_argument("--kmeans_iters", type=int, default=100, help="max kmeans iters")
parser.add_argument('--sk_epsilons', type=float, nargs='+', default=[0.0, 0.0, 0.0, 0.0], help="sinkhorn epsilons")
parser.add_argument("--sk_iters", type=int, default=50, help="max sinkhorn iters")
parser.add_argument("--device", type=str, default="cuda:1", help="gpu or cpu")
parser.add_argument('--num_emb_list', type=int, nargs='+', default=[256,256,256,256], help='emb num of every vq')
parser.add_argument('--e_dim', type=int, default=32, help='vq codebook embedding size')
parser.add_argument('--quant_loss_weight', type=float, default=1.0, help='vq quantion loss weight')
parser.add_argument('--layers', type=int, nargs='+', default=[2048,1024,512,256,128,64], help='hidden sizes of every layer')
parser.add_argument("--ckpt_dir", type=str, default="", help="output directory for model")
parser.add_argument("--warmup", type=int, default=5, help="epochs for warmup")
parser.add_argument("--rqvae_model", type=str, default="", help="")
return parser
def parse_pretrain_args(parser):
parser.add_argument("--ckpt_path", type=str, default="", help="output directory for model")
return parser
def parse_test_args(parser):
parser.add_argument("--ckpt_path", type=str,
default="",
help="The checkpoint path")
parser.add_argument("--lora", action="store_true", default=False)
parser.add_argument("--filter_items", action="store_true", default=False,
help="whether filter illegal items")
parser.add_argument("--results_file", type=str,
default="./results/test-ddp.json",
help="result output path")
parser.add_argument("--test_batch_size", type=int, default=1)
parser.add_argument("--num_beams", type=int, default=20)
parser.add_argument("--sample_num", type=int, default=-1,
help="test sample number, -1 represents using all test data")
parser.add_argument("--gpu_id", type=int, default=0,
help="GPU ID when testing with single GPU")
parser.add_argument("--test_prompt_ids", type=str, default="0",
help="test prompt ids, separate by comma. 'all' represents using all")
parser.add_argument("--metrics", type=str, default="hit@1,hit@5,hit@10,ndcg@5,ndcg@10",
help="test metrics, separate by comma")
parser.add_argument("--test_task", type=str, default="SeqRec")
return parser
def get_local_time():
cur = datetime.datetime.now()
cur = cur.strftime("%b-%d-%Y_%H-%M-%S")
return cur
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
def ensure_dir(dir_path):
os.makedirs(dir_path, exist_ok=True)
def load_datasets(args):
tasks = args.tasks.split(",")
train_prompt_sample_num = [int(_) for _ in args.train_prompt_sample_num.split(",")]
assert len(tasks) == len(train_prompt_sample_num), "prompt sample number does not match task number"
train_data_sample_num = [int(_) for _ in args.train_data_sample_num.split(",")]
assert len(tasks) == len(train_data_sample_num), "data sample number does not match task number"
train_datasets = []
for task, prompt_sample_num,data_sample_num in zip(tasks,train_prompt_sample_num,train_data_sample_num):
if task.lower() == "seqrec":
dataset = SeqRecDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "item2index" or task.lower() == "index2item":
dataset = ItemFeatDataset(args, task=task.lower(), prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() in ["inters2title", "inters2description", "intertitles2item"]:
dataset = FusionSeqRecDataset(args, task=task.lower(), mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() in ["itemsearch", "query2item"]:
dataset = ItemSearchDataset(args, task=task.lower(),mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "preferenceobtain":
dataset = PreferenceObtainDataset(args, prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
else:
raise NotImplementedError
train_datasets.append(dataset)
train_data = ConcatDataset(train_datasets)
valid_data = SeqRecDataset(args,"valid",args.valid_prompt_sample_num)
return train_data, valid_data
def load_test_dataset(args):
if args.test_task.lower() == "seqrec":
test_data = SeqRecFinetune(args, mode="test", sample_num=args.sample_num)
elif args.test_task.lower() == "itemsearch":
test_data = ItemSearchDataset(args, mode="test", sample_num=args.sample_num)
elif args.test_task.lower() == "fusionseqrec":
test_data = FusionSeqRecDataset(args, mode="test", sample_num=args.sample_num)
else:
raise NotImplementedError
return test_data
# def load_test_dataset(args):
# if args.test_task.lower() == "seqrec":
# test_data = SeqRecDataset(args, mode="test", sample_num=args.sample_num)
# elif args.test_task.lower() == "itemsearch":
# test_data = ItemSearchDataset(args, mode="test", sample_num=args.sample_num)
# elif args.test_task.lower() == "fusionseqrec":
# test_data = FusionSeqRecDataset(args, mode="test", sample_num=args.sample_num)
# else:
# raise NotImplementedError
# return test_data
def load_json(file):
with open(file, 'r') as f:
data = json.load(f)
return data