Benchmark-Single / data_process /amazon18_data_process.py
Junyin's picture
Add files using upload-large-folder tool
811e03d verified
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import check_path, clean_text, amazon18_dataset2fullname, write_json_file, write_remap_index
def load_ratings(file):
users, items, inters = set(), set(), set()
with open(file, 'r') as fp:
for line in tqdm(fp, desc='Load ratings'):
try:
item, user, rating, time = line.strip().split(',')
users.add(user)
items.add(item)
inters.add((user, item, float(rating), int(time)))
except ValueError:
print(line)
return users, items, inters
def load_meta_items(file):
items = {}
with gzip.open(file, "r") as fp:
for line in tqdm(fp, desc="Load metas"):
data = json.loads(line)
item = data["asin"]
title = clean_text(data["title"])
descriptions = data["description"]
descriptions = clean_text(descriptions)
brand = data["brand"].replace("by\n", "").strip()
categories = data["category"]
new_categories = []
for category in categories:
if "</span>" in category:
break
new_categories.append(category.strip())
categories = ",".join(new_categories).strip()
items[item] = {"title": title, "description": descriptions, "brand": brand, "categories": categories}
# print(items[item])
return items
def load_review_data(args, user2id, item2id):
dataset_full_name = amazon18_dataset2fullname[args.dataset]
review_file_path = os.path.join(args.input_path, 'Review', dataset_full_name + '.json.gz')
reviews = {}
with gzip.open(review_file_path, "r") as fp:
for line in tqdm(fp,desc='Load reviews'):
inter = json.loads(line)
try:
user = inter['reviewerID']
item = inter['asin']
if user in user2id and item in item2id:
uid = user2id[user]
iid = item2id[item]
else:
continue
if 'reviewText' in inter:
review = clean_text(inter['reviewText'])
else:
review = ''
if 'summary' in inter:
summary = clean_text(inter['summary'])
else:
summary = ''
reviews[str((uid,iid))]={"review":review, "summary":summary}
except ValueError:
print(line)
return reviews
def get_user2count(inters):
user2count = collections.defaultdict(int)
for unit in inters:
user2count[unit[0]] += 1
return user2count
def get_item2count(inters):
item2count = collections.defaultdict(int)
for unit in inters:
item2count[unit[1]] += 1
return item2count
def generate_candidates(unit2count, threshold):
cans = set()
for unit, count in unit2count.items():
if count >= threshold:
cans.add(unit)
return cans, len(unit2count) - len(cans)
def filter_inters(inters, can_items=None,
user_k_core_threshold=0, item_k_core_threshold=0):
new_inters = []
# filter by meta items
if can_items:
print('\nFiltering by meta items: ')
for unit in inters:
if unit[1] in can_items.keys():
new_inters.append(unit)
inters, new_inters = new_inters, []
print(' The number of inters: ', len(inters))
# filter by k-core
if user_k_core_threshold or item_k_core_threshold:
print('\nFiltering by k-core:')
idx = 0
user2count = get_user2count(inters)
item2count = get_item2count(inters)
while True:
new_user2count = collections.defaultdict(int)
new_item2count = collections.defaultdict(int)
users, n_filtered_users = generate_candidates( # users is set
user2count, user_k_core_threshold)
items, n_filtered_items = generate_candidates(
item2count, item_k_core_threshold)
if n_filtered_users == 0 and n_filtered_items == 0:
break
for unit in inters:
if unit[0] in users and unit[1] in items:
new_inters.append(unit)
new_user2count[unit[0]] += 1
new_item2count[unit[1]] += 1
idx += 1
inters, new_inters = new_inters, []
user2count, item2count = new_user2count, new_item2count
print(' Epoch %d The number of inters: %d, users: %d, items: %d'
% (idx, len(inters), len(user2count), len(item2count)))
return inters
def make_inters_in_order(inters):
user2inters, new_inters = collections.defaultdict(list), list()
for inter in inters:
user, item, rating, timestamp = inter
user2inters[user].append((user, item, rating, timestamp))
for user in user2inters:
user_inters = user2inters[user]
user_inters.sort(key=lambda d: d[3])
interacted_item = set()
for inter in user_inters:
if inter[1] in interacted_item: # 过滤重复交互
continue
interacted_item.add(inter[1])
new_inters.append(inter)
return new_inters
def preprocess_rating(args):
dataset_full_name = amazon18_dataset2fullname[args.dataset]
print('Process rating data: ')
print(' Dataset: ', args.dataset)
# load ratings
rating_file_path = os.path.join(args.input_path, 'Ratings', dataset_full_name + '.csv')
rating_users, rating_items, rating_inters = load_ratings(rating_file_path)
# load item IDs with meta data
meta_file_path = os.path.join(args.input_path, 'Metadata', f'meta_{dataset_full_name}.json.gz')
meta_items = load_meta_items(meta_file_path)
# 1. Filter items w/o meta data;
# 2. K-core filtering;
print('The number of raw inters: ', len(rating_inters))
rating_inters = make_inters_in_order(rating_inters)
rating_inters = filter_inters(rating_inters, can_items=meta_items,
user_k_core_threshold=args.user_k,
item_k_core_threshold=args.item_k)
# sort interactions chronologically for each user
rating_inters = make_inters_in_order(rating_inters)
print('\n')
# return: list of (user_ID, item_ID, rating, timestamp)
return rating_inters, meta_items
def convert_inters2dict(inters):
user2items = collections.defaultdict(list)
user2index, item2index = dict(), dict()
for inter in inters:
user, item, rating, timestamp = inter
if user not in user2index:
user2index[user] = len(user2index)
if item not in item2index:
item2index[item] = len(item2index)
user2items[user2index[user]].append(item2index[item])
return user2items, user2index, item2index
def generate_data(args, rating_inters):
print('Split dataset: ')
print(' Dataset: ', args.dataset)
# generate train valid temp
user2items, user2index, item2index = convert_inters2dict(rating_inters)
train_inters, valid_inters, test_inters = dict(), dict(), dict()
for u_index in range(len(user2index)):
inters = user2items[u_index]
# leave one out
train_inters[u_index] = [str(i_index) for i_index in inters[:-2]]
valid_inters[u_index] = [str(inters[-2])]
test_inters[u_index] = [str(inters[-1])]
assert len(user2items[u_index]) == len(train_inters[u_index]) + \
len(valid_inters[u_index]) + len(test_inters[u_index])
return user2items, train_inters, valid_inters, test_inters, user2index, item2index
def convert_to_atomic_files(args, train_data, valid_data, test_data):
print('Convert dataset: ')
print(' Dataset: ', args.dataset)
uid_list = list(train_data.keys())
uid_list.sort(key=lambda t: int(t))
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.train.inter'), 'w') as file:
file.write('user_id:token\titem_id_list:token_seq\titem_id:token\n')
for uid in uid_list:
item_seq = train_data[uid]
seq_len = len(item_seq)
for target_idx in range(1, seq_len):
target_item = item_seq[-target_idx]
seq = item_seq[:-target_idx][-50:]
file.write(f'{uid}\t{" ".join(seq)}\t{target_item}\n')
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.valid.inter'), 'w') as file:
file.write('user_id:token\titem_id_list:token_seq\titem_id:token\n')
for uid in uid_list:
item_seq = train_data[uid][-50:]
target_item = valid_data[uid][0]
file.write(f'{uid}\t{" ".join(item_seq)}\t{target_item}\n')
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.test.inter'), 'w') as file:
file.write('user_id:token\titem_id_list:token_seq\titem_id:token\n')
for uid in uid_list:
item_seq = (train_data[uid] + valid_data[uid])[-50:]
target_item = test_data[uid][0]
file.write(f'{uid}\t{" ".join(item_seq)}\t{target_item}\n')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
parser.add_argument('--user_k', type=int, default=5, help='user k-core filtering')
parser.add_argument('--item_k', type=int, default=5, help='item k-core filtering')
parser.add_argument('--input_path', type=str, default='')
parser.add_argument('--output_path', type=str, default='')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
# load interactions from raw rating file
rating_inters, meta_items = preprocess_rating(args)
# split train/valid/temp
all_inters,train_inters, valid_inters, test_inters, user2index, item2index = generate_data(args, rating_inters)
check_path(os.path.join(args.output_path, args.dataset))
write_json_file(all_inters, os.path.join(args.output_path, args.dataset, f'{args.dataset}.inter.json'))
convert_to_atomic_files(args, train_inters, valid_inters, test_inters)
item2feature = collections.defaultdict(dict)
for item, item_id in item2index.items():
item2feature[item_id] = meta_items[item]
# reviews = load_review_data(args, user2index, item2index)
print("user:",len(user2index))
print("item:",len(item2index))
write_json_file(item2feature, os.path.join(args.output_path, args.dataset, f'{args.dataset}.item.json'))
# write_json_file(reviews, os.path.join(args.output_path, args.dataset, f'{args.dataset}.review.json'))
write_remap_index(user2index, os.path.join(args.output_path, args.dataset, f'{args.dataset}.user2id'))
write_remap_index(item2index, os.path.join(args.output_path, args.dataset, f'{args.dataset}.item2id'))