JavierC03 commited on
Commit
259f1dc
·
verified ·
1 Parent(s): 370e3ea

Mi primer commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
Modelo1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9558e14949101257e0e18bd9e6e7c71fb7abad1135764c001cf641e4b9189776
3
+ size 148040
Modelo1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
Modelo1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab95d7f82c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab95d7f8360>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab95d7f8400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab95d7f84a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ab95d7f8540>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ab95d7f85e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab95d7f8680>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab95d7f8720>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ab95d7f87c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab95d7f8860>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab95d7f8900>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab95d7f89a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ab95d781500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1742229967736247431,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmoDs+jLSUPzWQ6T7smgq/hGp6PsuknD0AAAAAAAAAAI2Tjr32ZB26QBOvNkk/ATGoKlG7knrOtQAAAAAAAIA/M77iPZ903z4UhTW9D0D1vjDcCj3qv829AAAAAAAAAABgKR4+FdsHPzbwu71CAsa+9/pKPQ/Ior0AAAAAAAAAAGYWZjud9LE/ljvcPRowqr4q5IU6FpoyPQAAAAAAAAAABv1PvgXnqz9RNxW/X9cJv+BCP77q0Ja9AAAAAAAAAABmevm9xNetPawHBT6rJIC+rBgLPGEVlTwAAAAAAAAAAIadmr71hNU+lItMvesnrL5mCwu+YltpPQAAAAAAAAAAmjlEvLLEuD/asJi+xw+lPi7uLjydCRk9AAAAAAAAAADaO/g9jgd7P8J5Qj7ZDRm/iBcVPt3ETL0AAAAAAAAAAGaK+7srBO09LSKsvLewgr7Knma8uio8vQAAAAAAAAAAwHMVPvQwlD2KQka+9ivIvtbA0LyGrHK9AAAAAAAAAABABzq+1HyXvBF6Nzt3VpA5vbQHPg6+croAAIA/AACAP7MUFD1x/XW5eEIivFOpyruR4yQ7C3u1PAAAgD8AAIA/wCzePWiRoD29vbe9FxRPvmsqDT2PhSU8AAAAAAAAAABNYsY9biyZP2Izkz4NaQW/xJP3PcBSAj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9VT3IuGsWMAWyUTR0BjAF0lEdAnPXNXxOLznV9lChoBkdAbqW9eyAxz2gHS/FoCEdAnPXOE25xznV9lChoBkdAcA6tZFG5MGgHS9loCEdAnPbKSTyJ9HV9lChoBkdAbmxiKBNEgGgHS+doCEdAnPexyfcvd3V9lChoBkdAcFz0G/vfCWgHS8xoCEdAnPezch1TznV9lChoBkdAcP66d1+y7mgHS+9oCEdAnPhYaLn9vXV9lChoBkdAcjZ+0w8GLWgHS+1oCEdAnPjKOT7l73V9lChoBkdAcJWDf3vhImgHS+poCEdAnPk7XL/0d3V9lChoBkdAcaH/b0voNmgHS9BoCEdAnPsWsvIwNHV9lChoBkdAcWPk/r0J4WgHS8NoCEdAnP2HskY4yXV9lChoBkdAcRyblRxcV2gHS/FoCEdAnP2I2OyVwHV9lChoBkdAcKolZHNHH2gHS9BoCEdAnP2fzJ6ppHV9lChoBkdAbthe9i+cpmgHS+NoCEdAnP3JZGKAKHV9lChoBkdAYUKiNbTts2gHTegDaAhHQJz/fdoFmnR1fZQoaAZHQHGNj8cdYGNoB0vpaAhHQJ0AElRgqmV1fZQoaAZHQHAD1SS/0uloB0vdaAhHQJ0AhlZowmF1fZQoaAZHQGC708FINExoB03oA2gIR0CdAJIWgvlEdX2UKGgGR0BtwfT/hl19aAdL1mgIR0CdAOjASFoMdX2UKGgGR0Bhn8rbxmTUaAdN6ANoCEdAnQHAymALA3V9lChoBkdAcG0EjPfKp2gHS/FoCEdAnQJF9KEnLXV9lChoBkdAbgtuOS4e92gHS+ZoCEdAnQJPf0mMO3V9lChoBkdAcfjygf2bomgHTR0BaAhHQJ0CzEdeY2N1fZQoaAZHQHHQOfmLcbloB0vKaAhHQJ0C+X+l0o11fZQoaAZHQHHGL8Nx2jhoB0vNaAhHQJ0E9VYISlF1fZQoaAZHQHCPDTnaFmFoB0vmaAhHQJ0F50CA+ZB1fZQoaAZHQG5AP7el9BtoB02tAWgIR0CdBfoW56MSdX2UKGgGR0Bv/AMF2V3VaAdL9WgIR0CdBlqDbrTqdX2UKGgGR0ByL3Vy3kPuaAdNAgFoCEdAnQcEZm7J4nV9lChoBkdAcjkuDjBEa2gHS+ZoCEdAnQfoqslsxnV9lChoBkdAbqC1zhgmZ2gHS9NoCEdAnQf5Qgs9S3V9lChoBkdAcXb85CF9KGgHS/BoCEdAnQie6I3zc3V9lChoBkdAcglqz7di2GgHS/ZoCEdAnQjIPf8/EHV9lChoBkdAcZRsbedkKGgHS+VoCEdAnQlPlU6xPnV9lChoBkdAbx35DZ13dWgHS91oCEdAnQmN9c8klnV9lChoBkdAcjKao/A0sWgHTTUBaAhHQJ0J8XyiEg51fZQoaAZHQF8po1k1/DtoB03oA2gIR0CdCivw3HaOdX2UKGgGR0BuusALiMo+aAdL6GgIR0CdCnyTINmUdX2UKGgGR0BxU3hvR7Z4aAdL/2gIR0CdCommtQsPdX2UKGgGR0BvnbbtZ3cIaAdLzWgIR0CdC3O/cnE3dX2UKGgGR0Bx5UHB1s+FaAdL1mgIR0CdDOiiZfD2dX2UKGgGR0BzPChtcfNiaAdL+GgIR0CdDZ4XGff5dX2UKGgGR0BwD28BdUsGaAdL2WgIR0CdDafqHGjsdX2UKGgGR0BvqXrt3OfNaAdL2WgIR0CdDqccENe/dX2UKGgGR0BxQAoYvWYnaAdLx2gIR0CdDueFtbcHdX2UKGgGR0BxDLdGiHqNaAdNCgFoCEdAnRHRPTG5tnV9lChoBkdAcUn7Xg9/0GgHTQIBaAhHQJ0Sn3RG+bp1fZQoaAZHQG6J3ZGrjo9oB0viaAhHQJ0TJSqEOAl1fZQoaAZHQHDsFu3trsVoB0vmaAhHQJ0TSYQarFR1fZQoaAZHQHAm8DKYAsFoB00UAWgIR0CdFLv863iJdX2UKGgGR0Bwc7NRm9QGaAdNFgFoCEdAnRfvoFFDv3V9lChoBkdAcI0Rhc7hemgHTd0BaAhHQJ0ZWKMvRJF1fZQoaAZHQHHzqtLcsUZoB0vuaAhHQJ0ZogHNX5p1fZQoaAZHQEdtU5uIhyNoB0vraAhHQJ0aw1yeZoh1fZQoaAZHQHKVv4/NZ/1oB02AAWgIR0CdGthlUZNxdX2UKGgGR0BM/nRkVeruaAdLmWgIR0CdGyl1r6+GdX2UKGgGR0BtuujTKDChaAdLymgIR0CdHNwHJLdvdX2UKGgGR0BxRcfKZDzAaAdL5GgIR0CdHViS7oStdX2UKGgGR0BzMEZ75VOsaAdLzWgIR0CdHW4X40uUdX2UKGgGR0BvnwOjIq9XaAdL62gIR0CdH+0Yj0L/dX2UKGgGR0BxMSaG5+YuaAdL1GgIR0CdIVm6GxlhdX2UKGgGR0Bvu2xOclPaaAdLzmgIR0CdIhsD4gzQdX2UKGgGR0Bxyagg5imVaAdLvGgIR0CdIudcB2fTdX2UKGgGR0BvffAIppevaAdL8WgIR0CdJBdcB2fTdX2UKGgGR0BwlcsVclgMaAdL6GgIR0CdJXJ9y926dX2UKGgGR0Byhcg/1QIlaAdLxWgIR0CdJj7+kxh2dX2UKGgGR0ByrYpuuRs/aAdNEgFoCEdAnScLpzLfUHV9lChoBkdAb1BTtsvZiGgHS8VoCEdAnSkn1nM+vHV9lChoBkdAcfr/Z/Tb4GgHTRABaAhHQJ0pTBHkLhJ1fZQoaAZHQG5t53cHnlpoB0vKaAhHQJ0svlEJBxB1fZQoaAZHQHKkBOUMXrNoB0vbaAhHQJ0svtsvZh91fZQoaAZHQGJj5UT+NtJoB03oA2gIR0CdLM2MsH0LdX2UKGgGR0BxvzL9uP3jaAdL9mgIR0CdLTscyWRjdX2UKGgGR0BwugxIre67aAdL2GgIR0CdLoK508vFdX2UKGgGR0BNaJZntfG/aAdLyGgIR0CdL+hCtzS1dX2UKGgGR0ByH4TL4etCaAdL42gIR0CdMG13dKukdX2UKGgGR0Bt5XenAIppaAdL5WgIR0CdMiu9eyAydX2UKGgGR0BtlnC4z7/GaAdL0mgIR0CdM1tl7MPjdX2UKGgGR0Bwe1hd+ocaaAdL0WgIR0CdM3N4Z/CqdX2UKGgGR0Bjge1v2oNvaAdN6ANoCEdAnTQuIZZSvXV9lChoBkdAYoUz+m3vyGgHTegDaAhHQJ02qRuCPIZ1fZQoaAZHQHDpJnpSrHVoB0veaAhHQJ03RnscABF1fZQoaAZHQG11PECNjsloB0vjaAhHQJ03fL4etCB1fZQoaAZHQHC7dj0+TvBoB0vsaAhHQJ04Tjo6jnF1fZQoaAZHQGyFNv4ubqhoB01xA2gIR0CdORbFS88LdX2UKGgGR0BwDFOuaF23aAdNCQFoCEdAnTk2qPwNLHV9lChoBkdAckHcvM8oyGgHS/FoCEdAnTm58KG+K3V9lChoBkdAboEtknTiKmgHS/VoCEdAnTsD+NtIkXV9lChoBkdAWt60iQkonmgHTegDaAhHQJ07WV3Ux211fZQoaAZHQGKt/EfkmyBoB03oA2gIR0CdPBEnssxxdX2UKGgGR0BwO0vFm4AkaAdL2GgIR0CdPGO8kD6ndX2UKGgGR0ByX+1lXiiqaAdNGQFoCEdAnTyLTMJQcnV9lChoBkdAc2gg1WKdhGgHTQ0BaAhHQJ09SnR9gF51fZQoaAZHQHK6TzqbBoFoB0v+aAhHQJ09mKoAGSp1fZQoaAZHQHJI5Jbt7a9oB03dAmgIR0CdPe2uxKQJdX2UKGgGR0BwE/FxXGOuaAdL6WgIR0CdP4xAjY7JdX2UKGgGR0Bx0CSntOVPaAdNMgFoCEdAnT+euV5a/3V9lChoBkdAb3nMnqmj02gHS/FoCEdAnT+mwu/UOXV9lChoBkdAcNHqCHymRGgHS95oCEdAnT/Ku4gA63V9lChoBkdAcEbaTfR/mWgHS9ZoCEdAnUCKlLvkR3V9lChoBkdAcT+UD+zdDmgHS+hoCEdAnUCTj7yhBnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
Modelo1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbed44528a57b22b4c4e1b4cee6e74830ca3152dc37f85fece56c602d1105fdc
3
+ size 88362
Modelo1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901899f613c1e467e467ccf824040cd76e9c099c9ccd809b0c058587765c218f
3
+ size 43762
Modelo1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
Modelo1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO with MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.69 +/- 24.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO with MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO with MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab95d7f82c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab95d7f8360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab95d7f8400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab95d7f84a0>", "_build": "<function ActorCriticPolicy._build at 0x7ab95d7f8540>", "forward": "<function ActorCriticPolicy.forward at 0x7ab95d7f85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab95d7f8680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab95d7f8720>", "_predict": "<function ActorCriticPolicy._predict at 0x7ab95d7f87c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab95d7f8860>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab95d7f8900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab95d7f89a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab95d781500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742229967736247431, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmoDs+jLSUPzWQ6T7smgq/hGp6PsuknD0AAAAAAAAAAI2Tjr32ZB26QBOvNkk/ATGoKlG7knrOtQAAAAAAAIA/M77iPZ903z4UhTW9D0D1vjDcCj3qv829AAAAAAAAAABgKR4+FdsHPzbwu71CAsa+9/pKPQ/Ior0AAAAAAAAAAGYWZjud9LE/ljvcPRowqr4q5IU6FpoyPQAAAAAAAAAABv1PvgXnqz9RNxW/X9cJv+BCP77q0Ja9AAAAAAAAAABmevm9xNetPawHBT6rJIC+rBgLPGEVlTwAAAAAAAAAAIadmr71hNU+lItMvesnrL5mCwu+YltpPQAAAAAAAAAAmjlEvLLEuD/asJi+xw+lPi7uLjydCRk9AAAAAAAAAADaO/g9jgd7P8J5Qj7ZDRm/iBcVPt3ETL0AAAAAAAAAAGaK+7srBO09LSKsvLewgr7Knma8uio8vQAAAAAAAAAAwHMVPvQwlD2KQka+9ivIvtbA0LyGrHK9AAAAAAAAAABABzq+1HyXvBF6Nzt3VpA5vbQHPg6+croAAIA/AACAP7MUFD1x/XW5eEIivFOpyruR4yQ7C3u1PAAAgD8AAIA/wCzePWiRoD29vbe9FxRPvmsqDT2PhSU8AAAAAAAAAABNYsY9biyZP2Izkz4NaQW/xJP3PcBSAj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9VT3IuGsWMAWyUTR0BjAF0lEdAnPXNXxOLznV9lChoBkdAbqW9eyAxz2gHS/FoCEdAnPXOE25xznV9lChoBkdAcA6tZFG5MGgHS9loCEdAnPbKSTyJ9HV9lChoBkdAbmxiKBNEgGgHS+doCEdAnPexyfcvd3V9lChoBkdAcFz0G/vfCWgHS8xoCEdAnPezch1TznV9lChoBkdAcP66d1+y7mgHS+9oCEdAnPhYaLn9vXV9lChoBkdAcjZ+0w8GLWgHS+1oCEdAnPjKOT7l73V9lChoBkdAcJWDf3vhImgHS+poCEdAnPk7XL/0d3V9lChoBkdAcaH/b0voNmgHS9BoCEdAnPsWsvIwNHV9lChoBkdAcWPk/r0J4WgHS8NoCEdAnP2HskY4yXV9lChoBkdAcRyblRxcV2gHS/FoCEdAnP2I2OyVwHV9lChoBkdAcKolZHNHH2gHS9BoCEdAnP2fzJ6ppHV9lChoBkdAbthe9i+cpmgHS+NoCEdAnP3JZGKAKHV9lChoBkdAYUKiNbTts2gHTegDaAhHQJz/fdoFmnR1fZQoaAZHQHGNj8cdYGNoB0vpaAhHQJ0AElRgqmV1fZQoaAZHQHAD1SS/0uloB0vdaAhHQJ0AhlZowmF1fZQoaAZHQGC708FINExoB03oA2gIR0CdAJIWgvlEdX2UKGgGR0BtwfT/hl19aAdL1mgIR0CdAOjASFoMdX2UKGgGR0Bhn8rbxmTUaAdN6ANoCEdAnQHAymALA3V9lChoBkdAcG0EjPfKp2gHS/FoCEdAnQJF9KEnLXV9lChoBkdAbgtuOS4e92gHS+ZoCEdAnQJPf0mMO3V9lChoBkdAcfjygf2bomgHTR0BaAhHQJ0CzEdeY2N1fZQoaAZHQHHQOfmLcbloB0vKaAhHQJ0C+X+l0o11fZQoaAZHQHHGL8Nx2jhoB0vNaAhHQJ0E9VYISlF1fZQoaAZHQHCPDTnaFmFoB0vmaAhHQJ0F50CA+ZB1fZQoaAZHQG5AP7el9BtoB02tAWgIR0CdBfoW56MSdX2UKGgGR0Bv/AMF2V3VaAdL9WgIR0CdBlqDbrTqdX2UKGgGR0ByL3Vy3kPuaAdNAgFoCEdAnQcEZm7J4nV9lChoBkdAcjkuDjBEa2gHS+ZoCEdAnQfoqslsxnV9lChoBkdAbqC1zhgmZ2gHS9NoCEdAnQf5Qgs9S3V9lChoBkdAcXb85CF9KGgHS/BoCEdAnQie6I3zc3V9lChoBkdAcglqz7di2GgHS/ZoCEdAnQjIPf8/EHV9lChoBkdAcZRsbedkKGgHS+VoCEdAnQlPlU6xPnV9lChoBkdAbx35DZ13dWgHS91oCEdAnQmN9c8klnV9lChoBkdAcjKao/A0sWgHTTUBaAhHQJ0J8XyiEg51fZQoaAZHQF8po1k1/DtoB03oA2gIR0CdCivw3HaOdX2UKGgGR0BuusALiMo+aAdL6GgIR0CdCnyTINmUdX2UKGgGR0BxU3hvR7Z4aAdL/2gIR0CdCommtQsPdX2UKGgGR0BvnbbtZ3cIaAdLzWgIR0CdC3O/cnE3dX2UKGgGR0Bx5UHB1s+FaAdL1mgIR0CdDOiiZfD2dX2UKGgGR0BzPChtcfNiaAdL+GgIR0CdDZ4XGff5dX2UKGgGR0BwD28BdUsGaAdL2WgIR0CdDafqHGjsdX2UKGgGR0BvqXrt3OfNaAdL2WgIR0CdDqccENe/dX2UKGgGR0BxQAoYvWYnaAdLx2gIR0CdDueFtbcHdX2UKGgGR0BxDLdGiHqNaAdNCgFoCEdAnRHRPTG5tnV9lChoBkdAcUn7Xg9/0GgHTQIBaAhHQJ0Sn3RG+bp1fZQoaAZHQG6J3ZGrjo9oB0viaAhHQJ0TJSqEOAl1fZQoaAZHQHDsFu3trsVoB0vmaAhHQJ0TSYQarFR1fZQoaAZHQHAm8DKYAsFoB00UAWgIR0CdFLv863iJdX2UKGgGR0Bwc7NRm9QGaAdNFgFoCEdAnRfvoFFDv3V9lChoBkdAcI0Rhc7hemgHTd0BaAhHQJ0ZWKMvRJF1fZQoaAZHQHHzqtLcsUZoB0vuaAhHQJ0ZogHNX5p1fZQoaAZHQEdtU5uIhyNoB0vraAhHQJ0aw1yeZoh1fZQoaAZHQHKVv4/NZ/1oB02AAWgIR0CdGthlUZNxdX2UKGgGR0BM/nRkVeruaAdLmWgIR0CdGyl1r6+GdX2UKGgGR0BtuujTKDChaAdLymgIR0CdHNwHJLdvdX2UKGgGR0BxRcfKZDzAaAdL5GgIR0CdHViS7oStdX2UKGgGR0BzMEZ75VOsaAdLzWgIR0CdHW4X40uUdX2UKGgGR0BvnwOjIq9XaAdL62gIR0CdH+0Yj0L/dX2UKGgGR0BxMSaG5+YuaAdL1GgIR0CdIVm6GxlhdX2UKGgGR0Bvu2xOclPaaAdLzmgIR0CdIhsD4gzQdX2UKGgGR0Bxyagg5imVaAdLvGgIR0CdIudcB2fTdX2UKGgGR0BvffAIppevaAdL8WgIR0CdJBdcB2fTdX2UKGgGR0BwlcsVclgMaAdL6GgIR0CdJXJ9y926dX2UKGgGR0Byhcg/1QIlaAdLxWgIR0CdJj7+kxh2dX2UKGgGR0ByrYpuuRs/aAdNEgFoCEdAnScLpzLfUHV9lChoBkdAb1BTtsvZiGgHS8VoCEdAnSkn1nM+vHV9lChoBkdAcfr/Z/Tb4GgHTRABaAhHQJ0pTBHkLhJ1fZQoaAZHQG5t53cHnlpoB0vKaAhHQJ0svlEJBxB1fZQoaAZHQHKkBOUMXrNoB0vbaAhHQJ0svtsvZh91fZQoaAZHQGJj5UT+NtJoB03oA2gIR0CdLM2MsH0LdX2UKGgGR0BxvzL9uP3jaAdL9mgIR0CdLTscyWRjdX2UKGgGR0BwugxIre67aAdL2GgIR0CdLoK508vFdX2UKGgGR0BNaJZntfG/aAdLyGgIR0CdL+hCtzS1dX2UKGgGR0ByH4TL4etCaAdL42gIR0CdMG13dKukdX2UKGgGR0Bt5XenAIppaAdL5WgIR0CdMiu9eyAydX2UKGgGR0BtlnC4z7/GaAdL0mgIR0CdM1tl7MPjdX2UKGgGR0Bwe1hd+ocaaAdL0WgIR0CdM3N4Z/CqdX2UKGgGR0Bjge1v2oNvaAdN6ANoCEdAnTQuIZZSvXV9lChoBkdAYoUz+m3vyGgHTegDaAhHQJ02qRuCPIZ1fZQoaAZHQHDpJnpSrHVoB0veaAhHQJ03RnscABF1fZQoaAZHQG11PECNjsloB0vjaAhHQJ03fL4etCB1fZQoaAZHQHC7dj0+TvBoB0vsaAhHQJ04Tjo6jnF1fZQoaAZHQGyFNv4ubqhoB01xA2gIR0CdORbFS88LdX2UKGgGR0BwDFOuaF23aAdNCQFoCEdAnTk2qPwNLHV9lChoBkdAckHcvM8oyGgHS/FoCEdAnTm58KG+K3V9lChoBkdAboEtknTiKmgHS/VoCEdAnTsD+NtIkXV9lChoBkdAWt60iQkonmgHTegDaAhHQJ07WV3Ux211fZQoaAZHQGKt/EfkmyBoB03oA2gIR0CdPBEnssxxdX2UKGgGR0BwO0vFm4AkaAdL2GgIR0CdPGO8kD6ndX2UKGgGR0ByX+1lXiiqaAdNGQFoCEdAnTyLTMJQcnV9lChoBkdAc2gg1WKdhGgHTQ0BaAhHQJ09SnR9gF51fZQoaAZHQHK6TzqbBoFoB0v+aAhHQJ09mKoAGSp1fZQoaAZHQHJI5Jbt7a9oB03dAmgIR0CdPe2uxKQJdX2UKGgGR0BwE/FxXGOuaAdL6WgIR0CdP4xAjY7JdX2UKGgGR0Bx0CSntOVPaAdNMgFoCEdAnT+euV5a/3V9lChoBkdAb3nMnqmj02gHS/FoCEdAnT+mwu/UOXV9lChoBkdAcNHqCHymRGgHS95oCEdAnT/Ku4gA63V9lChoBkdAcEbaTfR/mWgHS9ZoCEdAnUCKlLvkR3V9lChoBkdAcT+UD+zdDmgHS+hoCEdAnUCTj7yhBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45720083a9e56b9a672ce7ece9b8fb499cf19197f733c0fd42c7f8a07616f706
3
+ size 158224
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.6897458, "std_reward": 24.103892827933024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-17T17:19:51.358685"}