Mi primer commit
Browse files- .gitattributes +1 -0
- Modelo1.zip +3 -0
- Modelo1/_stable_baselines3_version +1 -0
- Modelo1/data +99 -0
- Modelo1/policy.optimizer.pth +3 -0
- Modelo1/policy.pth +3 -0
- Modelo1/pytorch_variables.pth +3 -0
- Modelo1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
Modelo1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9558e14949101257e0e18bd9e6e7c71fb7abad1135764c001cf641e4b9189776
|
3 |
+
size 148040
|
Modelo1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
Modelo1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ab95d7f82c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab95d7f8360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab95d7f8400>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab95d7f84a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ab95d7f8540>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ab95d7f85e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab95d7f8680>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab95d7f8720>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ab95d7f87c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab95d7f8860>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab95d7f8900>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab95d7f89a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ab95d781500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1742229967736247431,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmoDs+jLSUPzWQ6T7smgq/hGp6PsuknD0AAAAAAAAAAI2Tjr32ZB26QBOvNkk/ATGoKlG7knrOtQAAAAAAAIA/M77iPZ903z4UhTW9D0D1vjDcCj3qv829AAAAAAAAAABgKR4+FdsHPzbwu71CAsa+9/pKPQ/Ior0AAAAAAAAAAGYWZjud9LE/ljvcPRowqr4q5IU6FpoyPQAAAAAAAAAABv1PvgXnqz9RNxW/X9cJv+BCP77q0Ja9AAAAAAAAAABmevm9xNetPawHBT6rJIC+rBgLPGEVlTwAAAAAAAAAAIadmr71hNU+lItMvesnrL5mCwu+YltpPQAAAAAAAAAAmjlEvLLEuD/asJi+xw+lPi7uLjydCRk9AAAAAAAAAADaO/g9jgd7P8J5Qj7ZDRm/iBcVPt3ETL0AAAAAAAAAAGaK+7srBO09LSKsvLewgr7Knma8uio8vQAAAAAAAAAAwHMVPvQwlD2KQka+9ivIvtbA0LyGrHK9AAAAAAAAAABABzq+1HyXvBF6Nzt3VpA5vbQHPg6+croAAIA/AACAP7MUFD1x/XW5eEIivFOpyruR4yQ7C3u1PAAAgD8AAIA/wCzePWiRoD29vbe9FxRPvmsqDT2PhSU8AAAAAAAAAABNYsY9biyZP2Izkz4NaQW/xJP3PcBSAj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9VT3IuGsWMAWyUTR0BjAF0lEdAnPXNXxOLznV9lChoBkdAbqW9eyAxz2gHS/FoCEdAnPXOE25xznV9lChoBkdAcA6tZFG5MGgHS9loCEdAnPbKSTyJ9HV9lChoBkdAbmxiKBNEgGgHS+doCEdAnPexyfcvd3V9lChoBkdAcFz0G/vfCWgHS8xoCEdAnPezch1TznV9lChoBkdAcP66d1+y7mgHS+9oCEdAnPhYaLn9vXV9lChoBkdAcjZ+0w8GLWgHS+1oCEdAnPjKOT7l73V9lChoBkdAcJWDf3vhImgHS+poCEdAnPk7XL/0d3V9lChoBkdAcaH/b0voNmgHS9BoCEdAnPsWsvIwNHV9lChoBkdAcWPk/r0J4WgHS8NoCEdAnP2HskY4yXV9lChoBkdAcRyblRxcV2gHS/FoCEdAnP2I2OyVwHV9lChoBkdAcKolZHNHH2gHS9BoCEdAnP2fzJ6ppHV9lChoBkdAbthe9i+cpmgHS+NoCEdAnP3JZGKAKHV9lChoBkdAYUKiNbTts2gHTegDaAhHQJz/fdoFmnR1fZQoaAZHQHGNj8cdYGNoB0vpaAhHQJ0AElRgqmV1fZQoaAZHQHAD1SS/0uloB0vdaAhHQJ0AhlZowmF1fZQoaAZHQGC708FINExoB03oA2gIR0CdAJIWgvlEdX2UKGgGR0BtwfT/hl19aAdL1mgIR0CdAOjASFoMdX2UKGgGR0Bhn8rbxmTUaAdN6ANoCEdAnQHAymALA3V9lChoBkdAcG0EjPfKp2gHS/FoCEdAnQJF9KEnLXV9lChoBkdAbgtuOS4e92gHS+ZoCEdAnQJPf0mMO3V9lChoBkdAcfjygf2bomgHTR0BaAhHQJ0CzEdeY2N1fZQoaAZHQHHQOfmLcbloB0vKaAhHQJ0C+X+l0o11fZQoaAZHQHHGL8Nx2jhoB0vNaAhHQJ0E9VYISlF1fZQoaAZHQHCPDTnaFmFoB0vmaAhHQJ0F50CA+ZB1fZQoaAZHQG5AP7el9BtoB02tAWgIR0CdBfoW56MSdX2UKGgGR0Bv/AMF2V3VaAdL9WgIR0CdBlqDbrTqdX2UKGgGR0ByL3Vy3kPuaAdNAgFoCEdAnQcEZm7J4nV9lChoBkdAcjkuDjBEa2gHS+ZoCEdAnQfoqslsxnV9lChoBkdAbqC1zhgmZ2gHS9NoCEdAnQf5Qgs9S3V9lChoBkdAcXb85CF9KGgHS/BoCEdAnQie6I3zc3V9lChoBkdAcglqz7di2GgHS/ZoCEdAnQjIPf8/EHV9lChoBkdAcZRsbedkKGgHS+VoCEdAnQlPlU6xPnV9lChoBkdAbx35DZ13dWgHS91oCEdAnQmN9c8klnV9lChoBkdAcjKao/A0sWgHTTUBaAhHQJ0J8XyiEg51fZQoaAZHQF8po1k1/DtoB03oA2gIR0CdCivw3HaOdX2UKGgGR0BuusALiMo+aAdL6GgIR0CdCnyTINmUdX2UKGgGR0BxU3hvR7Z4aAdL/2gIR0CdCommtQsPdX2UKGgGR0BvnbbtZ3cIaAdLzWgIR0CdC3O/cnE3dX2UKGgGR0Bx5UHB1s+FaAdL1mgIR0CdDOiiZfD2dX2UKGgGR0BzPChtcfNiaAdL+GgIR0CdDZ4XGff5dX2UKGgGR0BwD28BdUsGaAdL2WgIR0CdDafqHGjsdX2UKGgGR0BvqXrt3OfNaAdL2WgIR0CdDqccENe/dX2UKGgGR0BxQAoYvWYnaAdLx2gIR0CdDueFtbcHdX2UKGgGR0BxDLdGiHqNaAdNCgFoCEdAnRHRPTG5tnV9lChoBkdAcUn7Xg9/0GgHTQIBaAhHQJ0Sn3RG+bp1fZQoaAZHQG6J3ZGrjo9oB0viaAhHQJ0TJSqEOAl1fZQoaAZHQHDsFu3trsVoB0vmaAhHQJ0TSYQarFR1fZQoaAZHQHAm8DKYAsFoB00UAWgIR0CdFLv863iJdX2UKGgGR0Bwc7NRm9QGaAdNFgFoCEdAnRfvoFFDv3V9lChoBkdAcI0Rhc7hemgHTd0BaAhHQJ0ZWKMvRJF1fZQoaAZHQHHzqtLcsUZoB0vuaAhHQJ0ZogHNX5p1fZQoaAZHQEdtU5uIhyNoB0vraAhHQJ0aw1yeZoh1fZQoaAZHQHKVv4/NZ/1oB02AAWgIR0CdGthlUZNxdX2UKGgGR0BM/nRkVeruaAdLmWgIR0CdGyl1r6+GdX2UKGgGR0BtuujTKDChaAdLymgIR0CdHNwHJLdvdX2UKGgGR0BxRcfKZDzAaAdL5GgIR0CdHViS7oStdX2UKGgGR0BzMEZ75VOsaAdLzWgIR0CdHW4X40uUdX2UKGgGR0BvnwOjIq9XaAdL62gIR0CdH+0Yj0L/dX2UKGgGR0BxMSaG5+YuaAdL1GgIR0CdIVm6GxlhdX2UKGgGR0Bvu2xOclPaaAdLzmgIR0CdIhsD4gzQdX2UKGgGR0Bxyagg5imVaAdLvGgIR0CdIudcB2fTdX2UKGgGR0BvffAIppevaAdL8WgIR0CdJBdcB2fTdX2UKGgGR0BwlcsVclgMaAdL6GgIR0CdJXJ9y926dX2UKGgGR0Byhcg/1QIlaAdLxWgIR0CdJj7+kxh2dX2UKGgGR0ByrYpuuRs/aAdNEgFoCEdAnScLpzLfUHV9lChoBkdAb1BTtsvZiGgHS8VoCEdAnSkn1nM+vHV9lChoBkdAcfr/Z/Tb4GgHTRABaAhHQJ0pTBHkLhJ1fZQoaAZHQG5t53cHnlpoB0vKaAhHQJ0svlEJBxB1fZQoaAZHQHKkBOUMXrNoB0vbaAhHQJ0svtsvZh91fZQoaAZHQGJj5UT+NtJoB03oA2gIR0CdLM2MsH0LdX2UKGgGR0BxvzL9uP3jaAdL9mgIR0CdLTscyWRjdX2UKGgGR0BwugxIre67aAdL2GgIR0CdLoK508vFdX2UKGgGR0BNaJZntfG/aAdLyGgIR0CdL+hCtzS1dX2UKGgGR0ByH4TL4etCaAdL42gIR0CdMG13dKukdX2UKGgGR0Bt5XenAIppaAdL5WgIR0CdMiu9eyAydX2UKGgGR0BtlnC4z7/GaAdL0mgIR0CdM1tl7MPjdX2UKGgGR0Bwe1hd+ocaaAdL0WgIR0CdM3N4Z/CqdX2UKGgGR0Bjge1v2oNvaAdN6ANoCEdAnTQuIZZSvXV9lChoBkdAYoUz+m3vyGgHTegDaAhHQJ02qRuCPIZ1fZQoaAZHQHDpJnpSrHVoB0veaAhHQJ03RnscABF1fZQoaAZHQG11PECNjsloB0vjaAhHQJ03fL4etCB1fZQoaAZHQHC7dj0+TvBoB0vsaAhHQJ04Tjo6jnF1fZQoaAZHQGyFNv4ubqhoB01xA2gIR0CdORbFS88LdX2UKGgGR0BwDFOuaF23aAdNCQFoCEdAnTk2qPwNLHV9lChoBkdAckHcvM8oyGgHS/FoCEdAnTm58KG+K3V9lChoBkdAboEtknTiKmgHS/VoCEdAnTsD+NtIkXV9lChoBkdAWt60iQkonmgHTegDaAhHQJ07WV3Ux211fZQoaAZHQGKt/EfkmyBoB03oA2gIR0CdPBEnssxxdX2UKGgGR0BwO0vFm4AkaAdL2GgIR0CdPGO8kD6ndX2UKGgGR0ByX+1lXiiqaAdNGQFoCEdAnTyLTMJQcnV9lChoBkdAc2gg1WKdhGgHTQ0BaAhHQJ09SnR9gF51fZQoaAZHQHK6TzqbBoFoB0v+aAhHQJ09mKoAGSp1fZQoaAZHQHJI5Jbt7a9oB03dAmgIR0CdPe2uxKQJdX2UKGgGR0BwE/FxXGOuaAdL6WgIR0CdP4xAjY7JdX2UKGgGR0Bx0CSntOVPaAdNMgFoCEdAnT+euV5a/3V9lChoBkdAb3nMnqmj02gHS/FoCEdAnT+mwu/UOXV9lChoBkdAcNHqCHymRGgHS95oCEdAnT/Ku4gA63V9lChoBkdAcEbaTfR/mWgHS9ZoCEdAnUCKlLvkR3V9lChoBkdAcT+UD+zdDmgHS+hoCEdAnUCTj7yhBnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
Modelo1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbed44528a57b22b4c4e1b4cee6e74830ca3152dc37f85fece56c602d1105fdc
|
3 |
+
size 88362
|
Modelo1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:901899f613c1e467e467ccf824040cd76e9c099c9ccd809b0c058587765c218f
|
3 |
+
size 43762
|
Modelo1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
Modelo1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.6.0+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 2.0.2
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO with MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.69 +/- 24.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO with MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO with MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab95d7f82c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab95d7f8360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab95d7f8400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab95d7f84a0>", "_build": "<function ActorCriticPolicy._build at 0x7ab95d7f8540>", "forward": "<function ActorCriticPolicy.forward at 0x7ab95d7f85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab95d7f8680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab95d7f8720>", "_predict": "<function ActorCriticPolicy._predict at 0x7ab95d7f87c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab95d7f8860>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab95d7f8900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab95d7f89a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab95d781500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742229967736247431, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADmoDs+jLSUPzWQ6T7smgq/hGp6PsuknD0AAAAAAAAAAI2Tjr32ZB26QBOvNkk/ATGoKlG7knrOtQAAAAAAAIA/M77iPZ903z4UhTW9D0D1vjDcCj3qv829AAAAAAAAAABgKR4+FdsHPzbwu71CAsa+9/pKPQ/Ior0AAAAAAAAAAGYWZjud9LE/ljvcPRowqr4q5IU6FpoyPQAAAAAAAAAABv1PvgXnqz9RNxW/X9cJv+BCP77q0Ja9AAAAAAAAAABmevm9xNetPawHBT6rJIC+rBgLPGEVlTwAAAAAAAAAAIadmr71hNU+lItMvesnrL5mCwu+YltpPQAAAAAAAAAAmjlEvLLEuD/asJi+xw+lPi7uLjydCRk9AAAAAAAAAADaO/g9jgd7P8J5Qj7ZDRm/iBcVPt3ETL0AAAAAAAAAAGaK+7srBO09LSKsvLewgr7Knma8uio8vQAAAAAAAAAAwHMVPvQwlD2KQka+9ivIvtbA0LyGrHK9AAAAAAAAAABABzq+1HyXvBF6Nzt3VpA5vbQHPg6+croAAIA/AACAP7MUFD1x/XW5eEIivFOpyruR4yQ7C3u1PAAAgD8AAIA/wCzePWiRoD29vbe9FxRPvmsqDT2PhSU8AAAAAAAAAABNYsY9biyZP2Izkz4NaQW/xJP3PcBSAj4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9VT3IuGsWMAWyUTR0BjAF0lEdAnPXNXxOLznV9lChoBkdAbqW9eyAxz2gHS/FoCEdAnPXOE25xznV9lChoBkdAcA6tZFG5MGgHS9loCEdAnPbKSTyJ9HV9lChoBkdAbmxiKBNEgGgHS+doCEdAnPexyfcvd3V9lChoBkdAcFz0G/vfCWgHS8xoCEdAnPezch1TznV9lChoBkdAcP66d1+y7mgHS+9oCEdAnPhYaLn9vXV9lChoBkdAcjZ+0w8GLWgHS+1oCEdAnPjKOT7l73V9lChoBkdAcJWDf3vhImgHS+poCEdAnPk7XL/0d3V9lChoBkdAcaH/b0voNmgHS9BoCEdAnPsWsvIwNHV9lChoBkdAcWPk/r0J4WgHS8NoCEdAnP2HskY4yXV9lChoBkdAcRyblRxcV2gHS/FoCEdAnP2I2OyVwHV9lChoBkdAcKolZHNHH2gHS9BoCEdAnP2fzJ6ppHV9lChoBkdAbthe9i+cpmgHS+NoCEdAnP3JZGKAKHV9lChoBkdAYUKiNbTts2gHTegDaAhHQJz/fdoFmnR1fZQoaAZHQHGNj8cdYGNoB0vpaAhHQJ0AElRgqmV1fZQoaAZHQHAD1SS/0uloB0vdaAhHQJ0AhlZowmF1fZQoaAZHQGC708FINExoB03oA2gIR0CdAJIWgvlEdX2UKGgGR0BtwfT/hl19aAdL1mgIR0CdAOjASFoMdX2UKGgGR0Bhn8rbxmTUaAdN6ANoCEdAnQHAymALA3V9lChoBkdAcG0EjPfKp2gHS/FoCEdAnQJF9KEnLXV9lChoBkdAbgtuOS4e92gHS+ZoCEdAnQJPf0mMO3V9lChoBkdAcfjygf2bomgHTR0BaAhHQJ0CzEdeY2N1fZQoaAZHQHHQOfmLcbloB0vKaAhHQJ0C+X+l0o11fZQoaAZHQHHGL8Nx2jhoB0vNaAhHQJ0E9VYISlF1fZQoaAZHQHCPDTnaFmFoB0vmaAhHQJ0F50CA+ZB1fZQoaAZHQG5AP7el9BtoB02tAWgIR0CdBfoW56MSdX2UKGgGR0Bv/AMF2V3VaAdL9WgIR0CdBlqDbrTqdX2UKGgGR0ByL3Vy3kPuaAdNAgFoCEdAnQcEZm7J4nV9lChoBkdAcjkuDjBEa2gHS+ZoCEdAnQfoqslsxnV9lChoBkdAbqC1zhgmZ2gHS9NoCEdAnQf5Qgs9S3V9lChoBkdAcXb85CF9KGgHS/BoCEdAnQie6I3zc3V9lChoBkdAcglqz7di2GgHS/ZoCEdAnQjIPf8/EHV9lChoBkdAcZRsbedkKGgHS+VoCEdAnQlPlU6xPnV9lChoBkdAbx35DZ13dWgHS91oCEdAnQmN9c8klnV9lChoBkdAcjKao/A0sWgHTTUBaAhHQJ0J8XyiEg51fZQoaAZHQF8po1k1/DtoB03oA2gIR0CdCivw3HaOdX2UKGgGR0BuusALiMo+aAdL6GgIR0CdCnyTINmUdX2UKGgGR0BxU3hvR7Z4aAdL/2gIR0CdCommtQsPdX2UKGgGR0BvnbbtZ3cIaAdLzWgIR0CdC3O/cnE3dX2UKGgGR0Bx5UHB1s+FaAdL1mgIR0CdDOiiZfD2dX2UKGgGR0BzPChtcfNiaAdL+GgIR0CdDZ4XGff5dX2UKGgGR0BwD28BdUsGaAdL2WgIR0CdDafqHGjsdX2UKGgGR0BvqXrt3OfNaAdL2WgIR0CdDqccENe/dX2UKGgGR0BxQAoYvWYnaAdLx2gIR0CdDueFtbcHdX2UKGgGR0BxDLdGiHqNaAdNCgFoCEdAnRHRPTG5tnV9lChoBkdAcUn7Xg9/0GgHTQIBaAhHQJ0Sn3RG+bp1fZQoaAZHQG6J3ZGrjo9oB0viaAhHQJ0TJSqEOAl1fZQoaAZHQHDsFu3trsVoB0vmaAhHQJ0TSYQarFR1fZQoaAZHQHAm8DKYAsFoB00UAWgIR0CdFLv863iJdX2UKGgGR0Bwc7NRm9QGaAdNFgFoCEdAnRfvoFFDv3V9lChoBkdAcI0Rhc7hemgHTd0BaAhHQJ0ZWKMvRJF1fZQoaAZHQHHzqtLcsUZoB0vuaAhHQJ0ZogHNX5p1fZQoaAZHQEdtU5uIhyNoB0vraAhHQJ0aw1yeZoh1fZQoaAZHQHKVv4/NZ/1oB02AAWgIR0CdGthlUZNxdX2UKGgGR0BM/nRkVeruaAdLmWgIR0CdGyl1r6+GdX2UKGgGR0BtuujTKDChaAdLymgIR0CdHNwHJLdvdX2UKGgGR0BxRcfKZDzAaAdL5GgIR0CdHViS7oStdX2UKGgGR0BzMEZ75VOsaAdLzWgIR0CdHW4X40uUdX2UKGgGR0BvnwOjIq9XaAdL62gIR0CdH+0Yj0L/dX2UKGgGR0BxMSaG5+YuaAdL1GgIR0CdIVm6GxlhdX2UKGgGR0Bvu2xOclPaaAdLzmgIR0CdIhsD4gzQdX2UKGgGR0Bxyagg5imVaAdLvGgIR0CdIudcB2fTdX2UKGgGR0BvffAIppevaAdL8WgIR0CdJBdcB2fTdX2UKGgGR0BwlcsVclgMaAdL6GgIR0CdJXJ9y926dX2UKGgGR0Byhcg/1QIlaAdLxWgIR0CdJj7+kxh2dX2UKGgGR0ByrYpuuRs/aAdNEgFoCEdAnScLpzLfUHV9lChoBkdAb1BTtsvZiGgHS8VoCEdAnSkn1nM+vHV9lChoBkdAcfr/Z/Tb4GgHTRABaAhHQJ0pTBHkLhJ1fZQoaAZHQG5t53cHnlpoB0vKaAhHQJ0svlEJBxB1fZQoaAZHQHKkBOUMXrNoB0vbaAhHQJ0svtsvZh91fZQoaAZHQGJj5UT+NtJoB03oA2gIR0CdLM2MsH0LdX2UKGgGR0BxvzL9uP3jaAdL9mgIR0CdLTscyWRjdX2UKGgGR0BwugxIre67aAdL2GgIR0CdLoK508vFdX2UKGgGR0BNaJZntfG/aAdLyGgIR0CdL+hCtzS1dX2UKGgGR0ByH4TL4etCaAdL42gIR0CdMG13dKukdX2UKGgGR0Bt5XenAIppaAdL5WgIR0CdMiu9eyAydX2UKGgGR0BtlnC4z7/GaAdL0mgIR0CdM1tl7MPjdX2UKGgGR0Bwe1hd+ocaaAdL0WgIR0CdM3N4Z/CqdX2UKGgGR0Bjge1v2oNvaAdN6ANoCEdAnTQuIZZSvXV9lChoBkdAYoUz+m3vyGgHTegDaAhHQJ02qRuCPIZ1fZQoaAZHQHDpJnpSrHVoB0veaAhHQJ03RnscABF1fZQoaAZHQG11PECNjsloB0vjaAhHQJ03fL4etCB1fZQoaAZHQHC7dj0+TvBoB0vsaAhHQJ04Tjo6jnF1fZQoaAZHQGyFNv4ubqhoB01xA2gIR0CdORbFS88LdX2UKGgGR0BwDFOuaF23aAdNCQFoCEdAnTk2qPwNLHV9lChoBkdAckHcvM8oyGgHS/FoCEdAnTm58KG+K3V9lChoBkdAboEtknTiKmgHS/VoCEdAnTsD+NtIkXV9lChoBkdAWt60iQkonmgHTegDaAhHQJ07WV3Ux211fZQoaAZHQGKt/EfkmyBoB03oA2gIR0CdPBEnssxxdX2UKGgGR0BwO0vFm4AkaAdL2GgIR0CdPGO8kD6ndX2UKGgGR0ByX+1lXiiqaAdNGQFoCEdAnTyLTMJQcnV9lChoBkdAc2gg1WKdhGgHTQ0BaAhHQJ09SnR9gF51fZQoaAZHQHK6TzqbBoFoB0v+aAhHQJ09mKoAGSp1fZQoaAZHQHJI5Jbt7a9oB03dAmgIR0CdPe2uxKQJdX2UKGgGR0BwE/FxXGOuaAdL6WgIR0CdP4xAjY7JdX2UKGgGR0Bx0CSntOVPaAdNMgFoCEdAnT+euV5a/3V9lChoBkdAb3nMnqmj02gHS/FoCEdAnT+mwu/UOXV9lChoBkdAcNHqCHymRGgHS95oCEdAnT/Ku4gA63V9lChoBkdAcEbaTfR/mWgHS9ZoCEdAnUCKlLvkR3V9lChoBkdAcT+UD+zdDmgHS+hoCEdAnUCTj7yhBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45720083a9e56b9a672ce7ece9b8fb499cf19197f733c0fd42c7f8a07616f706
|
3 |
+
size 158224
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.6897458, "std_reward": 24.103892827933024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-17T17:19:51.358685"}
|