import multiprocessing import shutil from DFLIMG import * from core.interact import interact as io from core.joblib import Subprocessor from core.leras import nn from core import pathex from core.cv2ex import * class FacesetEnhancerSubprocessor(Subprocessor): #override def __init__(self, image_paths, output_dirpath, device_config): self.image_paths = image_paths self.output_dirpath = output_dirpath self.result = [] self.nn_initialize_mp_lock = multiprocessing.Lock() self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(device_config) super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600) #override def on_clients_initialized(self): io.progress_bar (None, len (self.image_paths)) #override def on_clients_finalized(self): io.progress_bar_close() #override def process_info_generator(self): base_dict = {'output_dirpath':self.output_dirpath, 'nn_initialize_mp_lock': self.nn_initialize_mp_lock,} for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices: client_dict = base_dict.copy() client_dict['device_idx'] = device_idx client_dict['device_name'] = device_name client_dict['device_type'] = device_type yield client_dict['device_name'], {}, client_dict #override def get_data(self, host_dict): if len (self.image_paths) > 0: return self.image_paths.pop(0) #override def on_data_return (self, host_dict, data): self.image_paths.insert(0, data) #override def on_result (self, host_dict, data, result): io.progress_bar_inc(1) if result[0] == 1: self.result +=[ (result[1], result[2]) ] #override def get_result(self): return self.result @staticmethod def get_devices_for_config (device_config): devices = device_config.devices cpu_only = len(devices) == 0 if not cpu_only: return [ (device.index, 'GPU', device.name, device.total_mem_gb) for device in devices ] else: return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ] class Cli(Subprocessor.Cli): #override def on_initialize(self, client_dict): device_idx = client_dict['device_idx'] cpu_only = client_dict['device_type'] == 'CPU' self.output_dirpath = client_dict['output_dirpath'] nn_initialize_mp_lock = client_dict['nn_initialize_mp_lock'] if cpu_only: device_config = nn.DeviceConfig.CPU() device_vram = 99 else: device_config = nn.DeviceConfig.GPUIndexes ([device_idx]) device_vram = device_config.devices[0].total_mem_gb nn.initialize (device_config) intro_str = 'Running on %s.' % (client_dict['device_name']) self.log_info (intro_str) from facelib import FaceEnhancer self.fe = FaceEnhancer( place_model_on_cpu=(device_vram<=2 or cpu_only), run_on_cpu=cpu_only ) #override def process_data(self, filepath): try: dflimg = DFLIMG.load (filepath) if dflimg is None or not dflimg.has_data(): self.log_err (f"{filepath.name} is not a dfl image file") else: dfl_dict = dflimg.get_dict() img = cv2_imread(filepath).astype(np.float32) / 255.0 img = self.fe.enhance(img) img = np.clip (img*255, 0, 255).astype(np.uint8) output_filepath = self.output_dirpath / filepath.name cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] ) dflimg = DFLIMG.load (output_filepath) dflimg.set_dict(dfl_dict) dflimg.save() return (1, filepath, output_filepath) except: self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}") return (0, filepath, None) def process_folder ( dirpath, cpu_only=False, force_gpu_idxs=None ): device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(suggest_all_gpu=True) ) \ if not cpu_only else nn.DeviceConfig.CPU() output_dirpath = dirpath.parent / (dirpath.name + '_enhanced') output_dirpath.mkdir (exist_ok=True, parents=True) dirpath_parts = '/'.join( dirpath.parts[-2:]) output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] ) io.log_info (f"Enhancing faceset in {dirpath_parts}") io.log_info ( f"Processing to {output_dirpath_parts}") output_images_paths = pathex.get_image_paths(output_dirpath) if len(output_images_paths) > 0: for filename in output_images_paths: Path(filename).unlink() image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )] result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, device_config=device_config).run() is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True) if is_merge: io.log_info (f"Copying processed files to {dirpath_parts}") for (filepath, output_filepath) in result: try: shutil.copy (output_filepath, filepath) except: pass io.log_info (f"Removing {output_dirpath_parts}") shutil.rmtree(output_dirpath)