import multiprocessing import operator from functools import partial import numpy as np from core import mathlib from core.interact import interact as io from core.leras import nn from facelib import FaceType from models import ModelBase from samplelib import * class TESTModel(ModelBase): #override def on_initialize_options(self): device_config = nn.getCurrentDeviceConfig() lowest_vram = 2 if len(device_config.devices) != 0: lowest_vram = device_config.devices.get_worst_device().total_mem_gb if lowest_vram >= 4: suggest_batch_size = 8 else: suggest_batch_size = 4 yn_str = {True:'y',False:'n'} min_res = 64 max_res = 640 #default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False) default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 96) default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f') default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256) default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64) default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None) default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None) default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True) default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True) default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', True) default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', True) default_adabelief = self.options['adabelief'] = self.load_or_def_option('adabelief', True) lr_dropout = self.load_or_def_option('lr_dropout', 'n') lr_dropout = {True:'y', False:'n'}.get(lr_dropout, lr_dropout) #backward comp default_lr_dropout = self.options['lr_dropout'] = lr_dropout default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True) default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0) default_bg_style_power = self.options['bg_style_power'] = self.load_or_def_option('bg_style_power', 0.0) default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none') default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False) default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False) ask_override = self.ask_override() if self.is_first_run() or ask_override: self.ask_autobackup_hour() self.ask_write_preview_history() self.ask_target_iter() self.ask_random_src_flip() self.ask_random_dst_flip() self.ask_batch_size(suggest_batch_size) #self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.') if self.is_first_run(): resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.") resolution = np.clip ( (resolution // 16) * 16, min_res, max_res) self.options['resolution'] = resolution self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower() default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64) default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', 32) if self.is_first_run(): self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 ) e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 ) self.options['e_dims'] = e_dims + e_dims % 2 d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 ) self.options['d_dims'] = d_dims + d_dims % 2 d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 ) self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2 if self.is_first_run() or ask_override: if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head': self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.") self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.') self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.') self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.') default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0) default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8) default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16) if self.is_first_run() or ask_override: self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.") self.options['adabelief'] = io.input_bool ("Use AdaBelief optimizer?", default_adabelief, help_message="Use AdaBelief optimizer. It requires more VRAM, but the accuracy and the generalization of the model is higher.") self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.") self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.") self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with lr_dropout(on) and random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 ) if self.options['gan_power'] != 0.0: gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 ) self.options['gan_patch_size'] = gan_patch_size gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 ) self.options['gan_dims'] = gan_dims self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn the color of the predicted face to be the same as dst inside mask. If you want to use this option with 'whole_face' you have to use XSeg trained mask. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.001 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 ) self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 ) self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.") self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.") self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, styles=0.0, uniform_yaw=Y") if self.options['pretrain'] and self.get_pretraining_data_path() is None: raise Exception("pretraining_data_path is not defined") self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims']) self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False) #override def on_initialize(self): device_config = nn.getCurrentDeviceConfig() devices = device_config.devices self.model_data_format = "NCHW" if len(devices) != 0 and not self.is_debug() else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf self.resolution = resolution = self.options['resolution'] inter_res = self.inter_res = resolution // 32 self.face_type = {'h' : FaceType.HALF, 'mf' : FaceType.MID_FULL, 'f' : FaceType.FULL, 'wf' : FaceType.WHOLE_FACE, 'head' : FaceType.HEAD}[ self.options['face_type'] ] if 'eyes_prio' in self.options: self.options.pop('eyes_prio') eyes_mouth_prio = self.options['eyes_mouth_prio'] ae_dims = self.options['ae_dims'] inter_dims = ae_dims e_dims = self.options['e_dims'] d_dims = self.options['d_dims'] d_mask_dims = self.options['d_mask_dims'] self.pretrain = self.options['pretrain'] if self.pretrain_just_disabled: self.set_iter(0) adabelief = self.options['adabelief'] use_fp16 = False if self.is_exporting: use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.') self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power'] random_warp = False if self.pretrain else self.options['random_warp'] random_src_flip = self.random_src_flip if not self.pretrain else True random_dst_flip = self.random_dst_flip if not self.pretrain else True blur_out_mask = self.options['blur_out_mask'] learn_dst_bg = False#True if self.pretrain: self.options_show_override['gan_power'] = 0.0 self.options_show_override['random_warp'] = False self.options_show_override['lr_dropout'] = 'n' self.options_show_override['face_style_power'] = 0.0 self.options_show_override['bg_style_power'] = 0.0 self.options_show_override['uniform_yaw'] = True masked_training = self.options['masked_training'] ct_mode = self.options['ct_mode'] if ct_mode == 'none': ct_mode = None models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu'] models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0' optimizer_vars_on_cpu = models_opt_device=='/CPU:0' input_ch=3 bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch) mask_shape = nn.get4Dshape(resolution,resolution,1) self.model_filename_list = [] with tf.device ('/CPU:0'): #Place holders on CPU self.warped_src = tf.placeholder (nn.floatx, bgr_shape, name='warped_src') self.warped_dst = tf.placeholder (nn.floatx, bgr_shape, name='warped_dst') self.target_src = tf.placeholder (nn.floatx, bgr_shape, name='target_src') self.target_dst = tf.placeholder (nn.floatx, bgr_shape, name='target_dst') self.target_srcm = tf.placeholder (nn.floatx, mask_shape, name='target_srcm') self.target_srcm_em = tf.placeholder (nn.floatx, mask_shape, name='target_srcm_em') self.target_dstm = tf.placeholder (nn.floatx, mask_shape, name='target_dstm') self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em') conv_dtype = tf.float16 if use_fp16 else tf.float32 # Initializing model classes class Downscale(nn.ModelBase): def on_build(self, in_ch, out_ch, kernel_size=5 ): self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype) def forward(self, x): return tf.nn.leaky_relu(self.conv1(x), 0.1) class Upscale(nn.ModelBase): def on_build(self, in_ch, out_ch, kernel_size=3 ): self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, x): x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2) return x class ResidualBlock(nn.ModelBase): def on_build(self, ch, kernel_size=3 ): self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, inp): x = self.conv1(inp) x = tf.nn.leaky_relu(x, 0.2) x = self.conv2(x) x = tf.nn.leaky_relu(inp+x, 0.2) return x class Encoder(nn.ModelBase): def on_build(self): self.down1 = Downscale(input_ch, e_dims, kernel_size=5) self.res1 = ResidualBlock(e_dims) self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5) self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5) self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5) self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5) self.res5 = ResidualBlock(e_dims*8) self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims ) def forward(self, x): if use_fp16: x = tf.cast(x, tf.float16) x = self.down1(x) x = self.res1(x) x = self.down2(x) x = self.down3(x) x = self.down4(x) x = self.down5(x) x = self.res5(x) if use_fp16: x = tf.cast(x, tf.float32) x = nn.pixel_norm(nn.flatten(x), axes=-1) x = self.dense1(x) return x class Inter(nn.ModelBase): def on_build(self): self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims) self.res0 = ResidualBlock(inter_dims) self.res1 = ResidualBlock(inter_dims) self.res2 = ResidualBlock(inter_dims) self.res3 = ResidualBlock(inter_dims) self.res4 = ResidualBlock(inter_dims) self.res5 = ResidualBlock(inter_dims) def forward(self, inp): x = inp x = self.dense2(x) x = nn.reshape_4D (x, inter_res, inter_res, inter_dims) x = self.res0(x) x = self.res1(x) x = self.res2(x) x = self.res3(x) x = self.res4(x) x = self.res5(x) return x class Decoder(nn.ModelBase): def on_build(self ): self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3) self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3) self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3) self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3) self.res0 = ResidualBlock(d_dims*8, kernel_size=3) self.res1 = ResidualBlock(d_dims*8, kernel_size=3) self.res2 = ResidualBlock(d_dims*4, kernel_size=3) self.res3 = ResidualBlock(d_dims*2, kernel_size=3) self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3) self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3) self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3) self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3) self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3) self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype) self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype) self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) def forward(self, z): if use_fp16: z = tf.cast(z, tf.float16) x = self.upscale0(z) x = self.res0(x) x = self.upscale1(x) x = self.res1(x) x = self.upscale2(x) x = self.res2(x) x = self.upscale3(x) x = self.res3(x) x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x), self.out_conv1(x), self.out_conv2(x), self.out_conv3(x)), nn.conv2d_ch_axis), 2) ) m = self.upscalem0(z) m = self.upscalem1(m) m = self.upscalem2(m) m = self.upscalem3(m) m = self.upscalem4(m) m = tf.nn.sigmoid(self.out_convm(m)) if use_fp16: x = tf.cast(x, tf.float32) m = tf.cast(m, tf.float32) return x, m with tf.device (models_opt_device): self.encoder = Encoder(name='encoder') self.inter_src = Inter(name='inter_src') self.inter_dst = Inter(name='inter_dst') self.decoder = Decoder(name='decoder') self.model_filename_list += [ [self.encoder, 'encoder.npy'], [self.inter_src, 'inter_src.npy'], [self.inter_dst, 'inter_dst.npy'], [self.decoder, 'decoder.npy'] ] if self.is_training: if gan_power != 0: self.D_src = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="D_src") self.model_filename_list += [ [self.D_src, 'GAN.npy'] ] # Initialize optimizers lr=5e-5 lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0 OptimizerClass = nn.AdaBelief if adabelief else nn.RMSprop clipnorm = 1.0 if self.options['clipgrad'] else 0.0 self.all_trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights() #if random_warp: # self.src_dst_trainable_weights += self.inter_B.get_weights() + self.inter_AB.get_weights() self.src_dst_opt = OptimizerClass(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt') self.src_dst_opt.initialize_variables (self.all_trainable_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu') self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ] if gan_power != 0: self.D_src_dst_opt = OptimizerClass(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt') self.D_src_dst_opt.initialize_variables ( self.D_src.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights() self.model_filename_list += [ (self.D_src_dst_opt, 'GAN_opt.npy') ] if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices) ) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size( gpu_count*bs_per_gpu) # Compute losses per GPU gpu_pred_src_src_list = [] gpu_pred_dst_dst_list = [] gpu_pred_src_dst_list = [] gpu_pred_src_srcm_list = [] gpu_pred_dst_dstm_list = [] gpu_pred_src_dstm_list = [] gpu_src_losses = [] gpu_dst_losses = [] gpu_G_loss_gvs = [] gpu_src_loss_gvs = [] gpu_dst_loss_gvs = [] gpu_D_code_loss_gvs = [] gpu_D_src_dst_loss_gvs = [] def DLossOnes(logits): return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3]) def DLossZeros(logits): return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3]) for gpu_id in range(gpu_count): with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu ) gpu_warped_src = self.warped_src [batch_slice,:,:,:] gpu_warped_dst = self.warped_dst [batch_slice,:,:,:] gpu_target_src = self.target_src [batch_slice,:,:,:] gpu_target_dst = self.target_dst [batch_slice,:,:,:] gpu_target_srcm = self.target_srcm[batch_slice,:,:,:] gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:] gpu_target_dstm = self.target_dstm[batch_slice,:,:,:] gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:] gpu_target_srcm_anti = 1-gpu_target_srcm gpu_target_dstm_anti = 1-gpu_target_dstm if blur_out_mask: #gpu_target_src = gpu_target_src*gpu_target_srcm_blur + nn.gaussian_blur(gpu_target_src, resolution // 32)*gpu_target_srcm_anti_blur #gpu_target_dst = gpu_target_dst*gpu_target_dstm_blur + nn.gaussian_blur(gpu_target_dst, resolution // 32)*gpu_target_dstm_anti_blur bg_blur_div = 128 gpu_target_src = gpu_target_src*gpu_target_srcm + \ tf.math.divide_no_nan(nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, resolution / bg_blur_div), (1-nn.gaussian_blur(gpu_target_srcm, resolution / bg_blur_div) ) ) * gpu_target_srcm_anti gpu_target_dst = gpu_target_dst*gpu_target_dstm + \ tf.math.divide_no_nan(nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, resolution / bg_blur_div), (1-nn.gaussian_blur(gpu_target_dstm, resolution / bg_blur_div)) ) * gpu_target_dstm_anti # process model tensors gpu_src_code = self.encoder (gpu_warped_src) gpu_src_code = self.inter_src (gpu_src_code) gpu_dst_code = self.encoder (gpu_warped_dst) gpu_dst_code, gpu_src_dst_code = self.inter_dst (gpu_dst_code), self.inter_src (gpu_dst_code) gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code) gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) #gpu_pred_src_src_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_src_code)) #gpu_pred_dst_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_dst_code)) #gpu_pred_src_dst_no_code_grad, _ = self.decoder(tf.stop_gradient(gpu_src_dst_code)) gpu_pred_src_src_list.append(gpu_pred_src_src) gpu_pred_dst_dst_list.append(gpu_pred_dst_dst) gpu_pred_src_dst_list.append(gpu_pred_src_dst) gpu_pred_src_srcm_list.append(gpu_pred_src_srcm) gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm) gpu_pred_src_dstm_list.append(gpu_pred_src_dstm) gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ) gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2 gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ) gpu_target_dstm_style_blur = gpu_target_dstm_blur #default style mask is 0.5 on boundary gpu_target_dstm_style_anti_blur = 1.0 - gpu_target_dstm_style_blur gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2 gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur gpu_target_dst_style_anti_masked = gpu_target_dst*gpu_target_dstm_style_anti_blur gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst gpu_psd_target_dst_style_anti_masked = gpu_pred_src_dst*gpu_target_dstm_style_anti_blur # Structural loss gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1]) # Pixel loss gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3]) gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked_opt - gpu_pred_dst_dst_masked_opt ), axis=[1,2,3]) # Eyes+mouth prio loss if eyes_mouth_prio: gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_em - gpu_pred_src_src*gpu_target_srcm_em ), axis=[1,2,3]) gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3]) # Mask loss gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] ) gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) #gpu_src_loss += nn.style_loss(gpu_pred_src_src_no_code_grad*tf.stop_gradient(gpu_pred_src_srcm), gpu_target_src*gpu_target_srcm, gaussian_blur_radius=resolution//8, loss_weight=10000*0.05) #gpu_dst_loss += nn.style_loss(gpu_pred_dst_dst_no_code_grad*tf.stop_gradient(gpu_pred_dst_dstm), gpu_target_dst*gpu_target_dstm, gaussian_blur_radius=resolution//8, loss_weight=10000*0.05) # face/bg style loss # face_style_power = self.options['face_style_power'] / 100.0 # if face_style_power != 0 and not self.pretrain: # gpu_src_loss += nn.style_loss(gpu_pred_src_dst_no_code_grad*tf.stop_gradient(gpu_pred_src_dstm), tf.stop_gradient(gpu_pred_dst_dst*gpu_pred_dst_dstm), gaussian_blur_radius=resolution//8, loss_weight=10000*face_style_power) # bg_style_power = self.options['bg_style_power'] / 100.0 # if bg_style_power != 0 and not self.pretrain: # gpu_src_loss += tf.reduce_mean( (10*bg_style_power)*nn.dssim( gpu_psd_target_dst_style_anti_masked, gpu_target_dst_style_anti_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) # gpu_src_loss += tf.reduce_mean( (10*bg_style_power)*tf.square(gpu_psd_target_dst_style_anti_masked - gpu_target_dst_style_anti_masked), axis=[1,2,3] ) gpu_src_losses += [gpu_src_loss] gpu_dst_losses += [gpu_dst_loss] #gpu_G_loss = gpu_src_loss + gpu_dst_loss #gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights )] gpu_src_loss_gvs += [ nn.gradients ( gpu_src_loss, self.encoder.get_weights() + self.inter_src.get_weights()+ self.decoder.get_weights() )] gpu_dst_loss_gvs += [ nn.gradients ( gpu_dst_loss, self.encoder.get_weights() + self.inter_dst.get_weights()+ self.decoder.get_weights() )] # # residual dst background transfer loss # if learn_dst_bg and 'liae' in archi_type: # psd_bg_mask = 1.0 - tf.where( tf.greater_equal( gpu_pred_src_dstm + gpu_pred_dst_dstm, tf.constant([0.1], nn.floatx) ), tf.ones_like(gpu_pred_src_dstm), tf.zeros_like(gpu_pred_src_dstm) ) # psd_bg_mask = tf.clip_by_value( (nn.gaussian_blur(psd_bg_mask, max(1, resolution // 16) ) - 0.5), 0, 0.5) * 2.0 # psd_bg_mask = tf.stop_gradient(psd_bg_mask) # gpu_G_loss += tf.reduce_mean( 10*tf.square(gpu_pred_dst_dst_no_code_grad*psd_bg_mask-gpu_target_dst*psd_bg_mask ),axis=[1,2,3] ) # if self.options['true_face_power'] != 0: # gpu_src_code_d = self.code_discriminator( gpu_src_code ) # gpu_dst_code_d = self.code_discriminator( gpu_dst_code ) # gpu_G_loss += self.options['true_face_power']*DLossOnes(gpu_src_code_d) # gpu_D_code_loss = (DLossOnes(gpu_dst_code_d) + DLossZeros(gpu_src_code_d))*0.5 # gpu_D_code_loss_gvs += [ nn.gradients (gpu_D_code_loss, self.code_discriminator.get_weights() ) ] # if gan_power != 0: # gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.D_src(gpu_pred_src_src_masked_opt) # gpu_target_src_d, gpu_target_src_d2 = self.D_src(gpu_target_src_masked_opt) # gpu_D_src_dst_loss = (DLossOnes(gpu_target_src_d) + DLossZeros(gpu_pred_src_src_d) ) * 0.5 + \ # (DLossOnes(gpu_target_src_d2) + DLossZeros(gpu_pred_src_src_d2) ) * 0.5 # gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.D_src.get_weights() ) ] # gpu_G_loss += gan_power*(DLossOnes(gpu_pred_src_src_d) + \ # DLossOnes(gpu_pred_src_src_d2)) # if masked_training: # # Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan # gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src) # gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] ) # Average losses and gradients, and create optimizer update ops with tf.device(f'/CPU:0'): pred_src_src = nn.concat(gpu_pred_src_src_list, 0) pred_dst_dst = nn.concat(gpu_pred_dst_dst_list, 0) pred_src_dst = nn.concat(gpu_pred_src_dst_list, 0) pred_src_srcm = nn.concat(gpu_pred_src_srcm_list, 0) pred_dst_dstm = nn.concat(gpu_pred_dst_dstm_list, 0) pred_src_dstm = nn.concat(gpu_pred_src_dstm_list, 0) with tf.device (models_opt_device): src_loss = tf.concat(gpu_src_losses, 0) dst_loss = tf.concat(gpu_dst_losses, 0) #src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs)) src_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_src_loss_gvs)) dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_dst_loss_gvs)) if gan_power != 0: src_D_src_dst_loss_gv_op = self.D_src_dst_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) ) # Initializing training and view functions def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ warped_dst, target_dst, target_dstm, target_dstm_em, ): s, = nn.tf_sess.run ( [ src_loss, src_loss_gv_op], feed_dict={self.warped_src :warped_src, self.target_src :target_src, self.target_srcm:target_srcm, self.target_srcm_em:target_srcm_em })[:1] d, = nn.tf_sess.run ( [ dst_loss, dst_loss_gv_op], feed_dict={self.warped_dst :warped_dst, self.target_dst :target_dst, self.target_dstm:target_dstm, self.target_dstm_em:target_dstm_em })[:1] return s, d self.src_dst_train = src_dst_train if gan_power != 0: def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ warped_dst, target_dst, target_dstm, target_dstm_em, ): nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src, self.target_src :target_src, self.target_srcm:target_srcm, self.target_srcm_em:target_srcm_em, self.warped_dst :warped_dst, self.target_dst :target_dst, self.target_dstm:target_dstm, self.target_dstm_em:target_dstm_em}) self.D_src_dst_train = D_src_dst_train def AE_view(warped_src, warped_dst): return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm], feed_dict={self.warped_src:warped_src, self.warped_dst:warped_dst}) self.AE_view = AE_view else: # Initializing merge function with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'): gpu_dst_code = self.encoder (self.warped_dst) gpu_dst_inter_B_code = self.inter_B (gpu_dst_code) gpu_dst_inter_AB_code = self.inter_AB (gpu_dst_code) gpu_dst_code = tf.concat([gpu_dst_inter_B_code,gpu_dst_inter_AB_code], nn.conv2d_ch_axis) gpu_src_dst_code = tf.concat([gpu_dst_inter_AB_code,gpu_dst_inter_AB_code], nn.conv2d_ch_axis) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_code) def AE_merge( warped_dst): return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst}) self.AE_merge = AE_merge # Loading/initializing all models/optimizers weights for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"): if self.pretrain_just_disabled: do_init = False if model == self.inter_src or model == self.inter_dst: do_init = True else: do_init = self.is_first_run() if self.is_training and gan_power != 0 and model == self.D_src: if self.gan_model_changed: do_init = True if not do_init: do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) ) if do_init: model.init_weights() ############### # initializing sample generators if self.is_training: training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path() training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path() random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None cpu_count = min(multiprocessing.cpu_count(), 8) src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 if ct_mode is not None: src_generators_count = int(src_generators_count * 1.5) self.set_training_data_generators ([ SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=random_src_flip), output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ], uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, generators_count=src_generators_count ), SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=random_dst_flip), output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ], uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, generators_count=dst_generators_count ) ]) self.last_src_samples_loss = [] self.last_dst_samples_loss = [] if self.pretrain_just_disabled: self.update_sample_for_preview(force_new=True) def export_dfm (self): output_path=self.get_strpath_storage_for_file('model.dfm') io.log_info(f'Dumping .dfm to {output_path}') tf = nn.tf nn.set_data_format('NCHW') with tf.device (nn.tf_default_device_name): warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') warped_dst = tf.transpose(warped_dst, (0,3,1,2)) gpu_dst_code = self.encoder (warped_dst) gpu_dst_inter_B_code = self.inter_B (gpu_dst_code) gpu_dst_inter_AB_code = self.inter_AB (gpu_dst_code) gpu_dst_code = tf.concat([gpu_dst_inter_B_code,gpu_dst_inter_AB_code], nn.conv2d_ch_axis) gpu_src_dst_code = tf.concat([gpu_dst_inter_AB_code,gpu_dst_inter_AB_code], nn.conv2d_ch_axis) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_code) gpu_pred_src_dst = tf.transpose(gpu_pred_src_dst, (0,2,3,1)) gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1)) gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1)) tf.identity(gpu_pred_dst_dstm, name='out_face_mask') tf.identity(gpu_pred_src_dst, name='out_celeb_face') tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask') output_graph_def = tf.graph_util.convert_variables_to_constants( nn.tf_sess, tf.get_default_graph().as_graph_def(), ['out_face_mask','out_celeb_face','out_celeb_face_mask'] ) import tf2onnx with tf.device("/CPU:0"): model_proto, _ = tf2onnx.convert._convert_common( output_graph_def, name='TEST', input_names=['in_face:0'], output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'], opset=13, output_path=output_path) #override def get_model_filename_list(self): return self.model_filename_list #override def onSave(self): for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False): model.save_weights ( self.get_strpath_storage_for_file(filename) ) #override def should_save_preview_history(self): return (not io.is_colab() and self.iter % ( 10*(max(1,self.resolution // 64)) ) == 0) or \ (io.is_colab() and self.iter % 100 == 0) #override def onTrainOneIter(self): if self.get_iter() == 0 and not self.pretrain and not self.pretrain_just_disabled: io.log_info('You are training the model from scratch. It is strongly recommended to use a pretrained model to speed up the training and improve the quality.\n') bs = self.get_batch_size() ( (warped_src, target_src, target_srcm, target_srcm_em), \ (warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples() src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) # for i in range(bs): # self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i],) ) # self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i],) ) # if len(self.last_src_samples_loss) >= bs*16: # src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True) # dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True) # target_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] ) # target_srcm = np.stack( [ x[2] for x in src_samples_loss[:bs] ] ) # target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] ) # target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] ) # target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] ) # target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] ) # src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em) # self.last_src_samples_loss = [] # self.last_dst_samples_loss = [] if self.gan_power != 0: self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) #override def onGetPreview(self, samples, for_history=False): ( (warped_src, target_src, target_srcm, target_srcm_em), (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ] DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ] target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )] n_samples = min(4, self.get_batch_size(), 800 // self.resolution ) if self.resolution <= 256: result = [] st = [] for i in range(n_samples): ar = S[i], SS[i], D[i], DD[i], SD[i] st.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST', np.concatenate (st, axis=0 )), ] st_m = [] for i in range(n_samples): SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i] ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*SD_mask st_m.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST masked', np.concatenate (st_m, axis=0 )), ] else: result = [] st = [] for i in range(n_samples): ar = S[i], SS[i] st.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST src-src', np.concatenate (st, axis=0 )), ] st = [] for i in range(n_samples): ar = D[i], DD[i] st.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST dst-dst', np.concatenate (st, axis=0 )), ] st = [] for i in range(n_samples): ar = D[i], SD[i] st.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST pred', np.concatenate (st, axis=0 )), ] st_m = [] for i in range(n_samples): ar = S[i]*target_srcm[i], SS[i] st_m.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST masked src-src', np.concatenate (st_m, axis=0 )), ] st_m = [] for i in range(n_samples): ar = D[i]*target_dstm[i], DD[i]*DDM[i] st_m.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST masked dst-dst', np.concatenate (st_m, axis=0 )), ] st_m = [] for i in range(n_samples): SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i] ar = D[i]*target_dstm[i], SD[i]*SD_mask st_m.append ( np.concatenate ( ar, axis=1) ) result += [ ('TEST masked pred', np.concatenate (st_m, axis=0 )), ] return result def predictor_func (self, face=None): face = nn.to_data_format(face[None,...], self.model_data_format, "NHWC") bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face) ] return bgr[0], mask_src_dstm[0][...,0], mask_dst_dstm[0][...,0] #override def get_MergerConfig(self): import merger return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay') Model = TESTModel