import operator from pathlib import Path import cv2 import numpy as np from core.leras import nn class S3FDExtractor(object): def __init__(self, place_model_on_cpu=False): nn.initialize(data_format="NHWC") tf = nn.tf model_path = Path(__file__).parent / "S3FD.npy" if not model_path.exists(): raise Exception("Unable to load S3FD.npy") class L2Norm(nn.LayerBase): def __init__(self, n_channels, **kwargs): self.n_channels = n_channels super().__init__(**kwargs) def build_weights(self): self.weight = tf.get_variable ("weight", (1, 1, 1, self.n_channels), dtype=nn.floatx, initializer=tf.initializers.ones ) def get_weights(self): return [self.weight] def __call__(self, inputs): x = inputs x = x / (tf.sqrt( tf.reduce_sum( tf.pow(x, 2), axis=-1, keepdims=True ) ) + 1e-10) * self.weight return x class S3FD(nn.ModelBase): def __init__(self): super().__init__(name='S3FD') def on_build(self): self.minus = tf.constant([104,117,123], dtype=nn.floatx ) self.conv1_1 = nn.Conv2D(3, 64, kernel_size=3, strides=1, padding='SAME') self.conv1_2 = nn.Conv2D(64, 64, kernel_size=3, strides=1, padding='SAME') self.conv2_1 = nn.Conv2D(64, 128, kernel_size=3, strides=1, padding='SAME') self.conv2_2 = nn.Conv2D(128, 128, kernel_size=3, strides=1, padding='SAME') self.conv3_1 = nn.Conv2D(128, 256, kernel_size=3, strides=1, padding='SAME') self.conv3_2 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME') self.conv3_3 = nn.Conv2D(256, 256, kernel_size=3, strides=1, padding='SAME') self.conv4_1 = nn.Conv2D(256, 512, kernel_size=3, strides=1, padding='SAME') self.conv4_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME') self.conv4_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME') self.conv5_1 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME') self.conv5_2 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME') self.conv5_3 = nn.Conv2D(512, 512, kernel_size=3, strides=1, padding='SAME') self.fc6 = nn.Conv2D(512, 1024, kernel_size=3, strides=1, padding=3) self.fc7 = nn.Conv2D(1024, 1024, kernel_size=1, strides=1, padding='SAME') self.conv6_1 = nn.Conv2D(1024, 256, kernel_size=1, strides=1, padding='SAME') self.conv6_2 = nn.Conv2D(256, 512, kernel_size=3, strides=2, padding='SAME') self.conv7_1 = nn.Conv2D(512, 128, kernel_size=1, strides=1, padding='SAME') self.conv7_2 = nn.Conv2D(128, 256, kernel_size=3, strides=2, padding='SAME') self.conv3_3_norm = L2Norm(256) self.conv4_3_norm = L2Norm(512) self.conv5_3_norm = L2Norm(512) self.conv3_3_norm_mbox_conf = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME') self.conv3_3_norm_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME') self.conv4_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME') self.conv4_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME') self.conv5_3_norm_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME') self.conv5_3_norm_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME') self.fc7_mbox_conf = nn.Conv2D(1024, 2, kernel_size=3, strides=1, padding='SAME') self.fc7_mbox_loc = nn.Conv2D(1024, 4, kernel_size=3, strides=1, padding='SAME') self.conv6_2_mbox_conf = nn.Conv2D(512, 2, kernel_size=3, strides=1, padding='SAME') self.conv6_2_mbox_loc = nn.Conv2D(512, 4, kernel_size=3, strides=1, padding='SAME') self.conv7_2_mbox_conf = nn.Conv2D(256, 2, kernel_size=3, strides=1, padding='SAME') self.conv7_2_mbox_loc = nn.Conv2D(256, 4, kernel_size=3, strides=1, padding='SAME') def forward(self, inp): x, = inp x = x - self.minus x = tf.nn.relu(self.conv1_1(x)) x = tf.nn.relu(self.conv1_2(x)) x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID") x = tf.nn.relu(self.conv2_1(x)) x = tf.nn.relu(self.conv2_2(x)) x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID") x = tf.nn.relu(self.conv3_1(x)) x = tf.nn.relu(self.conv3_2(x)) x = tf.nn.relu(self.conv3_3(x)) f3_3 = x x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID") x = tf.nn.relu(self.conv4_1(x)) x = tf.nn.relu(self.conv4_2(x)) x = tf.nn.relu(self.conv4_3(x)) f4_3 = x x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID") x = tf.nn.relu(self.conv5_1(x)) x = tf.nn.relu(self.conv5_2(x)) x = tf.nn.relu(self.conv5_3(x)) f5_3 = x x = tf.nn.max_pool(x, [1,2,2,1], [1,2,2,1], "VALID") x = tf.nn.relu(self.fc6(x)) x = tf.nn.relu(self.fc7(x)) ffc7 = x x = tf.nn.relu(self.conv6_1(x)) x = tf.nn.relu(self.conv6_2(x)) f6_2 = x x = tf.nn.relu(self.conv7_1(x)) x = tf.nn.relu(self.conv7_2(x)) f7_2 = x f3_3 = self.conv3_3_norm(f3_3) f4_3 = self.conv4_3_norm(f4_3) f5_3 = self.conv5_3_norm(f5_3) cls1 = self.conv3_3_norm_mbox_conf(f3_3) reg1 = self.conv3_3_norm_mbox_loc(f3_3) cls2 = tf.nn.softmax(self.conv4_3_norm_mbox_conf(f4_3)) reg2 = self.conv4_3_norm_mbox_loc(f4_3) cls3 = tf.nn.softmax(self.conv5_3_norm_mbox_conf(f5_3)) reg3 = self.conv5_3_norm_mbox_loc(f5_3) cls4 = tf.nn.softmax(self.fc7_mbox_conf(ffc7)) reg4 = self.fc7_mbox_loc(ffc7) cls5 = tf.nn.softmax(self.conv6_2_mbox_conf(f6_2)) reg5 = self.conv6_2_mbox_loc(f6_2) cls6 = tf.nn.softmax(self.conv7_2_mbox_conf(f7_2)) reg6 = self.conv7_2_mbox_loc(f7_2) # max-out background label bmax = tf.maximum(tf.maximum(cls1[:,:,:,0:1], cls1[:,:,:,1:2]), cls1[:,:,:,2:3]) cls1 = tf.concat ([bmax, cls1[:,:,:,3:4] ], axis=-1) cls1 = tf.nn.softmax(cls1) return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6] e = None if place_model_on_cpu: e = tf.device("/CPU:0") if e is not None: e.__enter__() self.model = S3FD() self.model.load_weights (model_path) if e is not None: e.__exit__(None,None,None) self.model.build_for_run ([ ( tf.float32, nn.get4Dshape (None,None,3) ) ]) def __enter__(self): return self def __exit__(self, exc_type=None, exc_value=None, traceback=None): return False #pass exception between __enter__ and __exit__ to outter level def extract (self, input_image, is_bgr=True, is_remove_intersects=False): if is_bgr: input_image = input_image[:,:,::-1] is_bgr = False (h, w, ch) = input_image.shape d = max(w, h) scale_to = 640 if d >= 1280 else d / 2 scale_to = max(64, scale_to) input_scale = d / scale_to input_image = cv2.resize (input_image, ( int(w/input_scale), int(h/input_scale) ), interpolation=cv2.INTER_LINEAR) olist = self.model.run ([ input_image[None,...] ] ) detected_faces = [] for ltrb in self.refine (olist): l,t,r,b = [ x*input_scale for x in ltrb] bt = b-t if min(r-l,bt) < 40: #filtering faces < 40pix by any side continue b += bt*0.1 #enlarging bottom line a bit for 2DFAN-4, because default is not enough covering a chin detected_faces.append ( [int(x) for x in (l,t,r,b) ] ) #sort by largest area first detected_faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in detected_faces ] detected_faces = sorted(detected_faces, key=operator.itemgetter(1), reverse=True ) detected_faces = [ x[0] for x in detected_faces] if is_remove_intersects: for i in range( len(detected_faces)-1, 0, -1): l1,t1,r1,b1 = detected_faces[i] l0,t0,r0,b0 = detected_faces[i-1] dx = min(r0, r1) - max(l0, l1) dy = min(b0, b1) - max(t0, t1) if (dx>=0) and (dy>=0): detected_faces.pop(i) return detected_faces def refine(self, olist): bboxlist = [] for i, ((ocls,), (oreg,)) in enumerate ( zip ( olist[::2], olist[1::2] ) ): stride = 2**(i + 2) # 4,8,16,32,64,128 s_d2 = stride / 2 s_m4 = stride * 4 for hindex, windex in zip(*np.where(ocls[...,1] > 0.05)): score = ocls[hindex, windex, 1] loc = oreg[hindex, windex, :] priors = np.array([windex * stride + s_d2, hindex * stride + s_d2, s_m4, s_m4]) priors_2p = priors[2:] box = np.concatenate((priors[:2] + loc[:2] * 0.1 * priors_2p, priors_2p * np.exp(loc[2:] * 0.2)) ) box[:2] -= box[2:] / 2 box[2:] += box[:2] bboxlist.append([*box, score]) bboxlist = np.array(bboxlist) if len(bboxlist) == 0: bboxlist = np.zeros((1, 5)) bboxlist = bboxlist[self.refine_nms(bboxlist, 0.3), :] bboxlist = [ x[:-1].astype(np.int) for x in bboxlist if x[-1] >= 0.5] return bboxlist def refine_nms(self, dets, thresh): keep = list() if len(dets) == 0: return keep x_1, y_1, x_2, y_2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] areas = (x_2 - x_1 + 1) * (y_2 - y_1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx_1, yy_1 = np.maximum(x_1[i], x_1[order[1:]]), np.maximum(y_1[i], y_1[order[1:]]) xx_2, yy_2 = np.minimum(x_2[i], x_2[order[1:]]), np.minimum(y_2[i], y_2[order[1:]]) width, height = np.maximum(0.0, xx_2 - xx_1 + 1), np.maximum(0.0, yy_2 - yy_1 + 1) ovr = width * height / (areas[i] + areas[order[1:]] - width * height) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep