|
import multiprocessing |
|
import operator |
|
import pickle |
|
import traceback |
|
from pathlib import Path |
|
|
|
import samplelib.PackedFaceset |
|
from core import pathex |
|
from core.mplib import MPSharedList |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor |
|
from DFLIMG import * |
|
from facelib import FaceType, LandmarksProcessor |
|
|
|
from .Sample import Sample, SampleType |
|
|
|
|
|
class SampleLoader: |
|
samples_cache = dict() |
|
@staticmethod |
|
def get_person_id_max_count(samples_path): |
|
samples = None |
|
try: |
|
samples = samplelib.PackedFaceset.load(samples_path) |
|
except: |
|
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_path)}, {traceback.format_exc()}") |
|
|
|
if samples is None: |
|
raise ValueError("packed faceset not found.") |
|
persons_name_idxs = {} |
|
for sample in samples: |
|
persons_name_idxs[sample.person_name] = 0 |
|
return len(list(persons_name_idxs.keys())) |
|
|
|
@staticmethod |
|
def load(sample_type, samples_path, subdirs=False): |
|
""" |
|
Return MPSharedList of samples |
|
""" |
|
samples_cache = SampleLoader.samples_cache |
|
|
|
if str(samples_path) not in samples_cache.keys(): |
|
samples_cache[str(samples_path)] = [None]*SampleType.QTY |
|
|
|
samples = samples_cache[str(samples_path)] |
|
|
|
if sample_type == SampleType.IMAGE: |
|
if samples[sample_type] is None: |
|
samples[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( pathex.get_image_paths(samples_path, subdirs=subdirs), "Loading") ] |
|
|
|
elif sample_type == SampleType.FACE: |
|
if samples[sample_type] is None: |
|
try: |
|
result = samplelib.PackedFaceset.load(samples_path) |
|
except: |
|
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(samples_dat_path)}, {traceback.format_exc()}") |
|
|
|
if result is not None: |
|
io.log_info (f"Loaded {len(result)} packed faces from {samples_path}") |
|
|
|
if result is None: |
|
result = SampleLoader.load_face_samples( pathex.get_image_paths(samples_path, subdirs=subdirs) ) |
|
|
|
samples[sample_type] = MPSharedList(result) |
|
elif sample_type == SampleType.FACE_TEMPORAL_SORTED: |
|
result = SampleLoader.load (SampleType.FACE, samples_path) |
|
result = SampleLoader.upgradeToFaceTemporalSortedSamples(result) |
|
samples[sample_type] = MPSharedList(result) |
|
|
|
return samples[sample_type] |
|
|
|
@staticmethod |
|
def load_face_samples ( image_paths): |
|
result = FaceSamplesLoaderSubprocessor(image_paths).run() |
|
sample_list = [] |
|
|
|
for filename, data in result: |
|
if data is None: |
|
continue |
|
( face_type, |
|
shape, |
|
landmarks, |
|
seg_ie_polys, |
|
xseg_mask_compressed, |
|
eyebrows_expand_mod, |
|
source_filename ) = data |
|
|
|
sample_list.append( Sample(filename=filename, |
|
sample_type=SampleType.FACE, |
|
face_type=FaceType.fromString (face_type), |
|
shape=shape, |
|
landmarks=landmarks, |
|
seg_ie_polys=seg_ie_polys, |
|
xseg_mask_compressed=xseg_mask_compressed, |
|
eyebrows_expand_mod=eyebrows_expand_mod, |
|
source_filename=source_filename, |
|
)) |
|
return sample_list |
|
|
|
@staticmethod |
|
def upgradeToFaceTemporalSortedSamples( samples ): |
|
new_s = [ (s, s.source_filename) for s in samples] |
|
new_s = sorted(new_s, key=operator.itemgetter(1)) |
|
|
|
return [ s[0] for s in new_s] |
|
|
|
|
|
class FaceSamplesLoaderSubprocessor(Subprocessor): |
|
|
|
def __init__(self, image_paths ): |
|
self.image_paths = image_paths |
|
self.image_paths_len = len(image_paths) |
|
self.idxs = [*range(self.image_paths_len)] |
|
self.result = [None]*self.image_paths_len |
|
super().__init__('FaceSamplesLoader', FaceSamplesLoaderSubprocessor.Cli, 60) |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Loading samples", len (self.image_paths)) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def process_info_generator(self): |
|
for i in range(min(multiprocessing.cpu_count(), 8) ): |
|
yield 'CPU%d' % (i), {}, {} |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.idxs) > 0: |
|
idx = self.idxs.pop(0) |
|
return idx, self.image_paths[idx] |
|
|
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.idxs.insert(0, data[0]) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
idx, dflimg = result |
|
self.result[idx] = (self.image_paths[idx], dflimg) |
|
io.progress_bar_inc(1) |
|
|
|
|
|
def get_result(self): |
|
return self.result |
|
|
|
class Cli(Subprocessor.Cli): |
|
|
|
def process_data(self, data): |
|
idx, filename = data |
|
dflimg = DFLIMG.load (Path(filename)) |
|
|
|
if dflimg is None or not dflimg.has_data(): |
|
self.log_err (f"FaceSamplesLoader: {filename} is not a dfl image file.") |
|
data = None |
|
else: |
|
data = (dflimg.get_face_type(), |
|
dflimg.get_shape(), |
|
dflimg.get_landmarks(), |
|
dflimg.get_seg_ie_polys(), |
|
dflimg.get_xseg_mask_compressed(), |
|
dflimg.get_eyebrows_expand_mod(), |
|
dflimg.get_source_filename() ) |
|
|
|
return idx, data |
|
|
|
|
|
def get_data_name (self, data): |
|
|
|
return data[1] |
|
|