DF / samplelib /SampleGeneratorImageTemporal.py
Jatin7860's picture
Upload 226 files
fcd5579 verified
raw
history blame
3.01 kB
import traceback
import cv2
import numpy as np
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
SampleType)
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
...
]
'''
class SampleGeneratorImageTemporal(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, temporal_image_count, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
super().__init__(debug, batch_size)
self.temporal_image_count = temporal_image_count
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.samples = SampleLoader.load (SampleType.IMAGE, samples_path)
self.generator_samples = [ self.samples ]
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] if self.debug else \
[iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
self.generator_counter = -1
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, generator_id):
samples = self.generator_samples[generator_id]
samples_len = len(samples)
if samples_len == 0:
raise ValueError('No training data provided.')
mult_max = 4
samples_sub_len = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
if samples_sub_len <= 0:
raise ValueError('Not enough samples to fit temporal line.')
shuffle_idxs = []
while True:
batches = None
for n_batch in range(self.batch_size):
if len(shuffle_idxs) == 0:
shuffle_idxs = [ *range(samples_sub_len) ]
np.random.shuffle (shuffle_idxs)
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0]
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(temporal_samples)) ]
for i in range(len(temporal_samples)):
batches[i].append ( temporal_samples[i] )
yield [ np.array(batch) for batch in batches]