|
import multiprocessing |
|
import pickle |
|
import time |
|
import traceback |
|
from enum import IntEnum |
|
|
|
import cv2 |
|
import numpy as np |
|
from pathlib import Path |
|
from core import imagelib, mplib, pathex |
|
from core.imagelib import sd |
|
from core.cv2ex import * |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor, SubprocessGenerator, ThisThreadGenerator |
|
from facelib import LandmarksProcessor |
|
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType) |
|
|
|
class SampleGeneratorFaceXSeg(SampleGeneratorBase): |
|
def __init__ (self, paths, debug=False, batch_size=1, resolution=256, face_type=None, |
|
generators_count=4, data_format="NHWC", |
|
**kwargs): |
|
|
|
super().__init__(debug, batch_size) |
|
self.initialized = False |
|
|
|
samples = sum([ SampleLoader.load (SampleType.FACE, path) for path in paths ] ) |
|
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples).run() |
|
|
|
if len(seg_sample_idxs) == 0: |
|
seg_sample_idxs = SegmentedSampleFilterSubprocessor(samples, count_xseg_mask=True).run() |
|
if len(seg_sample_idxs) == 0: |
|
raise Exception(f"No segmented faces found.") |
|
else: |
|
io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.") |
|
else: |
|
io.log_info(f"Using {len(seg_sample_idxs)} segmented samples.") |
|
|
|
if self.debug: |
|
self.generators_count = 1 |
|
else: |
|
self.generators_count = max(1, generators_count) |
|
|
|
args = (samples, seg_sample_idxs, resolution, face_type, data_format) |
|
if self.debug: |
|
self.generators = [ThisThreadGenerator ( self.batch_func, args )] |
|
else: |
|
self.generators = [SubprocessGenerator ( self.batch_func, args, start_now=False ) for i in range(self.generators_count) ] |
|
|
|
SubprocessGenerator.start_in_parallel( self.generators ) |
|
|
|
self.generator_counter = -1 |
|
|
|
self.initialized = True |
|
|
|
|
|
def is_initialized(self): |
|
return self.initialized |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
self.generator_counter += 1 |
|
generator = self.generators[self.generator_counter % len(self.generators) ] |
|
return next(generator) |
|
|
|
def batch_func(self, param ): |
|
samples, seg_sample_idxs, resolution, face_type, data_format = param |
|
|
|
shuffle_idxs = [] |
|
bg_shuffle_idxs = [] |
|
|
|
random_flip = True |
|
rotation_range=[-10,10] |
|
scale_range=[-0.05, 0.05] |
|
tx_range=[-0.05, 0.05] |
|
ty_range=[-0.05, 0.05] |
|
|
|
random_bilinear_resize_chance, random_bilinear_resize_max_size_per = 25,75 |
|
sharpen_chance, sharpen_kernel_max_size = 25, 5 |
|
motion_blur_chance, motion_blur_mb_max_size = 25, 5 |
|
gaussian_blur_chance, gaussian_blur_kernel_max_size = 25, 5 |
|
random_jpeg_compress_chance = 25 |
|
|
|
def gen_img_mask(sample): |
|
img = sample.load_bgr() |
|
h,w,c = img.shape |
|
|
|
if sample.seg_ie_polys.has_polys(): |
|
mask = np.zeros ((h,w,1), dtype=np.float32) |
|
sample.seg_ie_polys.overlay_mask(mask) |
|
elif sample.has_xseg_mask(): |
|
mask = sample.get_xseg_mask() |
|
mask[mask < 0.5] = 0.0 |
|
mask[mask >= 0.5] = 1.0 |
|
else: |
|
raise Exception(f'no mask in sample {sample.filename}') |
|
|
|
if face_type == sample.face_type: |
|
if w != resolution: |
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 ) |
|
mask = cv2.resize( mask, (resolution, resolution), interpolation=cv2.INTER_LANCZOS4 ) |
|
else: |
|
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type) |
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 ) |
|
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 ) |
|
|
|
if len(mask.shape) == 2: |
|
mask = mask[...,None] |
|
return img, mask |
|
|
|
bs = self.batch_size |
|
while True: |
|
batches = [ [], [] ] |
|
|
|
n_batch = 0 |
|
while n_batch < bs: |
|
try: |
|
if len(shuffle_idxs) == 0: |
|
shuffle_idxs = seg_sample_idxs.copy() |
|
np.random.shuffle(shuffle_idxs) |
|
sample = samples[shuffle_idxs.pop()] |
|
img, mask = gen_img_mask(sample) |
|
|
|
if np.random.randint(2) == 0: |
|
if len(bg_shuffle_idxs) == 0: |
|
bg_shuffle_idxs = seg_sample_idxs.copy() |
|
np.random.shuffle(bg_shuffle_idxs) |
|
bg_sample = samples[bg_shuffle_idxs.pop()] |
|
|
|
bg_img, bg_mask = gen_img_mask(bg_sample) |
|
|
|
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[-0.10, 0.10], tx_range=[-0.10, 0.10], ty_range=[-0.10, 0.10] ) |
|
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True) |
|
bg_mask = imagelib.warp_by_params (bg_wp, bg_mask, can_warp=False, can_transform=True, can_flip=True, border_replicate=False) |
|
bg_img = bg_img*(1-bg_mask) |
|
if np.random.randint(2) == 0: |
|
bg_img = imagelib.apply_random_hsv_shift(bg_img) |
|
else: |
|
bg_img = imagelib.apply_random_rgb_levels(bg_img) |
|
|
|
c_mask = 1.0 - (1-bg_mask) * (1-mask) |
|
rnd = 0.15 + np.random.uniform()*0.85 |
|
img = img*(c_mask) + img*(1-c_mask)*rnd + bg_img*(1-c_mask)*(1-rnd) |
|
|
|
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range ) |
|
img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=True) |
|
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False) |
|
|
|
img = np.clip(img.astype(np.float32), 0, 1) |
|
mask[mask < 0.5] = 0.0 |
|
mask[mask >= 0.5] = 1.0 |
|
mask = np.clip(mask, 0, 1) |
|
|
|
if np.random.randint(2) == 0: |
|
|
|
krn = np.random.randint( resolution//4, resolution ) |
|
krn = krn - krn % 2 + 1 |
|
img = img + cv2.GaussianBlur(img*mask, (krn,krn), 0) |
|
|
|
if np.random.randint(2) == 0: |
|
|
|
krn = np.random.randint( resolution//4, resolution ) |
|
krn = krn - krn % 2 + 1 |
|
img = img + cv2.GaussianBlur(img*(1-mask), (krn,krn), 0) |
|
|
|
if np.random.randint(2) == 0: |
|
img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution])) |
|
else: |
|
img = imagelib.apply_random_rgb_levels(img, mask=sd.random_circle_faded ([resolution,resolution])) |
|
|
|
if np.random.randint(2) == 0: |
|
img = imagelib.apply_random_sharpen( img, sharpen_chance, sharpen_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution])) |
|
else: |
|
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution])) |
|
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution])) |
|
|
|
if np.random.randint(2) == 0: |
|
img = imagelib.apply_random_nearest_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution])) |
|
else: |
|
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution])) |
|
img = np.clip(img, 0, 1) |
|
|
|
img = imagelib.apply_random_jpeg_compress( img, random_jpeg_compress_chance, mask=sd.random_circle_faded ([resolution,resolution])) |
|
|
|
if data_format == "NCHW": |
|
img = np.transpose(img, (2,0,1) ) |
|
mask = np.transpose(mask, (2,0,1) ) |
|
|
|
batches[0].append ( img ) |
|
batches[1].append ( mask ) |
|
|
|
n_batch += 1 |
|
except: |
|
io.log_err ( traceback.format_exc() ) |
|
|
|
yield [ np.array(batch) for batch in batches] |
|
|
|
class SegmentedSampleFilterSubprocessor(Subprocessor): |
|
|
|
def __init__(self, samples, count_xseg_mask=False ): |
|
self.samples = samples |
|
self.samples_len = len(self.samples) |
|
self.count_xseg_mask = count_xseg_mask |
|
|
|
self.idxs = [*range(self.samples_len)] |
|
self.result = [] |
|
super().__init__('SegmentedSampleFilterSubprocessor', SegmentedSampleFilterSubprocessor.Cli, 60) |
|
|
|
|
|
def process_info_generator(self): |
|
for i in range(multiprocessing.cpu_count()): |
|
yield 'CPU%d' % (i), {}, {'samples':self.samples, 'count_xseg_mask':self.count_xseg_mask} |
|
|
|
|
|
def on_clients_initialized(self): |
|
io.progress_bar ("Filtering", self.samples_len) |
|
|
|
|
|
def on_clients_finalized(self): |
|
io.progress_bar_close() |
|
|
|
|
|
def get_data(self, host_dict): |
|
if len (self.idxs) > 0: |
|
return self.idxs.pop(0) |
|
|
|
return None |
|
|
|
|
|
def on_data_return (self, host_dict, data): |
|
self.idxs.insert(0, data) |
|
|
|
|
|
def on_result (self, host_dict, data, result): |
|
idx, is_ok = result |
|
if is_ok: |
|
self.result.append(idx) |
|
io.progress_bar_inc(1) |
|
def get_result(self): |
|
return self.result |
|
|
|
class Cli(Subprocessor.Cli): |
|
|
|
def on_initialize(self, client_dict): |
|
self.samples = client_dict['samples'] |
|
self.count_xseg_mask = client_dict['count_xseg_mask'] |
|
|
|
def process_data(self, idx): |
|
if self.count_xseg_mask: |
|
return idx, self.samples[idx].has_xseg_mask() |
|
else: |
|
return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0 |
|
|
|
""" |
|
bg_path = None |
|
for path in paths: |
|
bg_path = Path(path) / 'backgrounds' |
|
if bg_path.exists(): |
|
|
|
break |
|
if bg_path is None: |
|
io.log_info(f'Random backgrounds will not be used. Place no face jpg images to aligned\backgrounds folder. ') |
|
bg_pathes = None |
|
else: |
|
bg_pathes = pathex.get_image_paths(bg_path, image_extensions=['.jpg'], return_Path_class=True) |
|
io.log_info(f'Using {len(bg_pathes)} random backgrounds from {bg_path}') |
|
|
|
if bg_pathes is not None: |
|
bg_path = bg_pathes[ np.random.randint(len(bg_pathes)) ] |
|
|
|
bg_img = cv2_imread(bg_path) |
|
if bg_img is not None: |
|
bg_img = bg_img.astype(np.float32) / 255.0 |
|
bg_img = imagelib.normalize_channels(bg_img, 3) |
|
|
|
bg_img = imagelib.random_crop(bg_img, resolution, resolution) |
|
bg_img = cv2.resize(bg_img, (resolution, resolution), interpolation=cv2.INTER_LINEAR) |
|
|
|
if np.random.randint(2) == 0: |
|
bg_img = imagelib.apply_random_hsv_shift(bg_img) |
|
else: |
|
bg_img = imagelib.apply_random_rgb_levels(bg_img) |
|
|
|
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[0,0], tx_range=[0,0], ty_range=[0,0]) |
|
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True) |
|
|
|
bg = img*(1-mask) |
|
fg = img*mask |
|
|
|
c_mask = sd.random_circle_faded ([resolution,resolution]) |
|
bg = ( bg_img*c_mask + bg*(1-c_mask) )*(1-mask) |
|
|
|
img = fg+bg |
|
|
|
else: |
|
""" |