|
import multiprocessing |
|
import operator |
|
from functools import partial |
|
|
|
import numpy as np |
|
|
|
from core import mathlib |
|
from core.interact import interact as io |
|
from core.leras import nn |
|
from facelib import FaceType, XSegNet |
|
from models import ModelBase |
|
from samplelib import * |
|
|
|
class XSegModel(ModelBase): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, force_model_class_name='XSeg', **kwargs) |
|
|
|
|
|
def on_initialize_options(self): |
|
ask_override = self.ask_override() |
|
|
|
if not self.is_first_run() and ask_override: |
|
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."): |
|
self.set_iter(0) |
|
|
|
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf') |
|
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False) |
|
|
|
if self.is_first_run(): |
|
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower() |
|
|
|
if self.is_first_run() or ask_override: |
|
self.ask_batch_size(4, range=[2,16]) |
|
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain) |
|
|
|
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None): |
|
raise Exception("pretraining_data_path is not defined") |
|
|
|
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False) |
|
|
|
|
|
def on_initialize(self): |
|
device_config = nn.getCurrentDeviceConfig() |
|
self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC" |
|
nn.initialize(data_format=self.model_data_format) |
|
tf = nn.tf |
|
|
|
device_config = nn.getCurrentDeviceConfig() |
|
devices = device_config.devices |
|
|
|
self.resolution = resolution = 256 |
|
|
|
|
|
self.face_type = {'h' : FaceType.HALF, |
|
'mf' : FaceType.MID_FULL, |
|
'f' : FaceType.FULL, |
|
'wf' : FaceType.WHOLE_FACE, |
|
'head' : FaceType.HEAD}[ self.options['face_type'] ] |
|
|
|
|
|
place_model_on_cpu = len(devices) == 0 |
|
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name |
|
|
|
bgr_shape = nn.get4Dshape(resolution,resolution,3) |
|
mask_shape = nn.get4Dshape(resolution,resolution,1) |
|
|
|
|
|
self.model = XSegNet(name='XSeg', |
|
resolution=resolution, |
|
load_weights=not self.is_first_run(), |
|
weights_file_root=self.get_model_root_path(), |
|
training=True, |
|
place_model_on_cpu=place_model_on_cpu, |
|
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), |
|
data_format=nn.data_format) |
|
|
|
self.pretrain = self.options['pretrain'] |
|
if self.pretrain_just_disabled: |
|
self.set_iter(0) |
|
|
|
if self.is_training: |
|
|
|
gpu_count = max(1, len(devices) ) |
|
bs_per_gpu = max(1, self.get_batch_size() // gpu_count) |
|
self.set_batch_size( gpu_count*bs_per_gpu) |
|
|
|
|
|
gpu_pred_list = [] |
|
|
|
gpu_losses = [] |
|
gpu_loss_gvs = [] |
|
|
|
for gpu_id in range(gpu_count): |
|
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): |
|
with tf.device(f'/CPU:0'): |
|
|
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu ) |
|
gpu_input_t = self.model.input_t [batch_slice,:,:,:] |
|
gpu_target_t = self.model.target_t [batch_slice,:,:,:] |
|
|
|
|
|
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain) |
|
gpu_pred_list.append(gpu_pred_t) |
|
|
|
|
|
if self.pretrain: |
|
|
|
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) |
|
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) |
|
|
|
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3]) |
|
else: |
|
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3]) |
|
|
|
gpu_losses += [gpu_loss] |
|
|
|
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.get_weights() ) ] |
|
|
|
|
|
|
|
|
|
with tf.device (models_opt_device): |
|
pred = tf.concat(gpu_pred_list, 0) |
|
loss = tf.concat(gpu_losses, 0) |
|
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs)) |
|
|
|
|
|
|
|
if self.pretrain: |
|
def train(input_np, target_np): |
|
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np}) |
|
return l |
|
else: |
|
def train(input_np, target_np): |
|
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np }) |
|
return l |
|
self.train = train |
|
|
|
def view(input_np): |
|
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np}) |
|
self.view = view |
|
|
|
|
|
cpu_count = min(multiprocessing.cpu_count(), 8) |
|
src_dst_generators_count = cpu_count // 2 |
|
src_generators_count = cpu_count // 2 |
|
dst_generators_count = cpu_count // 2 |
|
|
|
if self.pretrain: |
|
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(), |
|
sample_process_options=SampleProcessor.Options(random_flip=True), |
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, |
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, |
|
], |
|
uniform_yaw_distribution=False, |
|
generators_count=cpu_count ) |
|
self.set_training_data_generators ([pretrain_gen]) |
|
else: |
|
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path], |
|
debug=self.is_debug(), |
|
batch_size=self.get_batch_size(), |
|
resolution=resolution, |
|
face_type=self.face_type, |
|
generators_count=src_dst_generators_count, |
|
data_format=nn.data_format) |
|
|
|
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), |
|
sample_process_options=SampleProcessor.Options(random_flip=False), |
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, |
|
], |
|
generators_count=src_generators_count, |
|
raise_on_no_data=False ) |
|
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), |
|
sample_process_options=SampleProcessor.Options(random_flip=False), |
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, |
|
], |
|
generators_count=dst_generators_count, |
|
raise_on_no_data=False ) |
|
|
|
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator]) |
|
|
|
|
|
def get_model_filename_list(self): |
|
return self.model.model_filename_list |
|
|
|
|
|
def onSave(self): |
|
self.model.save_weights() |
|
|
|
|
|
def onTrainOneIter(self): |
|
image_np, target_np = self.generate_next_samples()[0] |
|
loss = self.train (image_np, target_np) |
|
|
|
return ( ('loss', np.mean(loss) ), ) |
|
|
|
|
|
def onGetPreview(self, samples, for_history=False): |
|
n_samples = min(4, self.get_batch_size(), 800 // self.resolution ) |
|
|
|
if self.pretrain: |
|
srcdst_samples, = samples |
|
image_np, mask_np = srcdst_samples |
|
else: |
|
srcdst_samples, src_samples, dst_samples = samples |
|
image_np, mask_np = srcdst_samples |
|
|
|
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ] |
|
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ] |
|
|
|
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) ) |
|
|
|
result = [] |
|
st = [] |
|
for i in range(n_samples): |
|
if self.pretrain: |
|
ar = I[i], IM[i] |
|
else: |
|
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i]) |
|
st.append ( np.concatenate ( ar, axis=1) ) |
|
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ] |
|
|
|
if not self.pretrain and len(src_samples) != 0: |
|
src_np, = src_samples |
|
|
|
|
|
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view (src_np) ) ] |
|
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ] |
|
|
|
st = [] |
|
for i in range(n_samples): |
|
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i]) |
|
st.append ( np.concatenate ( ar, axis=1) ) |
|
|
|
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ] |
|
|
|
if not self.pretrain and len(dst_samples) != 0: |
|
dst_np, = dst_samples |
|
|
|
|
|
D, DM, = [ np.clip(nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ] |
|
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ] |
|
|
|
st = [] |
|
for i in range(n_samples): |
|
ar = D[i], DM[i], D[i]*DM[i] + 0.5*D[i]*(1-DM[i]) + 0.5*green_bg*(1-DM[i]) |
|
st.append ( np.concatenate ( ar, axis=1) ) |
|
|
|
result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ] |
|
|
|
return result |
|
|
|
def export_dfm (self): |
|
output_path = self.get_strpath_storage_for_file(f'model.onnx') |
|
io.log_info(f'Dumping .onnx to {output_path}') |
|
tf = nn.tf |
|
|
|
with tf.device (nn.tf_default_device_name): |
|
input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') |
|
input_t = tf.transpose(input_t, (0,3,1,2)) |
|
_, pred_t = self.model.flow(input_t) |
|
pred_t = tf.transpose(pred_t, (0,2,3,1)) |
|
|
|
tf.identity(pred_t, name='out_mask') |
|
|
|
output_graph_def = tf.graph_util.convert_variables_to_constants( |
|
nn.tf_sess, |
|
tf.get_default_graph().as_graph_def(), |
|
['out_mask'] |
|
) |
|
|
|
import tf2onnx |
|
with tf.device("/CPU:0"): |
|
model_proto, _ = tf2onnx.convert._convert_common( |
|
output_graph_def, |
|
name='XSeg', |
|
input_names=['in_face:0'], |
|
output_names=['out_mask:0'], |
|
opset=13, |
|
output_path=output_path) |
|
|
|
Model = XSegModel |