|
import traceback |
|
import json |
|
import multiprocessing |
|
import shutil |
|
from pathlib import Path |
|
import cv2 |
|
import numpy as np |
|
|
|
from core import imagelib, pathex |
|
from core.cv2ex import * |
|
from core.interact import interact as io |
|
from core.joblib import Subprocessor |
|
from core.leras import nn |
|
from DFLIMG import * |
|
from facelib import FaceType, LandmarksProcessor |
|
from . import Extractor, Sorter |
|
from .Extractor import ExtractSubprocessor |
|
|
|
|
|
def extract_vggface2_dataset(input_dir, device_args={} ): |
|
multi_gpu = device_args.get('multi_gpu', False) |
|
cpu_only = device_args.get('cpu_only', False) |
|
|
|
input_path = Path(input_dir) |
|
if not input_path.exists(): |
|
raise ValueError('Input directory not found. Please ensure it exists.') |
|
|
|
bb_csv = input_path / 'loose_bb_train.csv' |
|
if not bb_csv.exists(): |
|
raise ValueError('loose_bb_train.csv found. Please ensure it exists.') |
|
|
|
bb_lines = bb_csv.read_text().split('\n') |
|
bb_lines.pop(0) |
|
|
|
bb_dict = {} |
|
for line in bb_lines: |
|
name, l, t, w, h = line.split(',') |
|
name = name[1:-1] |
|
l, t, w, h = [ int(x) for x in (l, t, w, h) ] |
|
bb_dict[name] = (l,t,w, h) |
|
|
|
|
|
output_path = input_path.parent / (input_path.name + '_out') |
|
|
|
dir_names = pathex.get_all_dir_names(input_path) |
|
|
|
if not output_path.exists(): |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
data = [] |
|
for dir_name in io.progress_bar_generator(dir_names, "Collecting"): |
|
cur_input_path = input_path / dir_name |
|
cur_output_path = output_path / dir_name |
|
|
|
if not cur_output_path.exists(): |
|
cur_output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
input_path_image_paths = pathex.get_image_paths(cur_input_path) |
|
|
|
for filename in input_path_image_paths: |
|
filename_path = Path(filename) |
|
|
|
name = filename_path.parent.name + '/' + filename_path.stem |
|
if name not in bb_dict: |
|
continue |
|
|
|
l,t,w,h = bb_dict[name] |
|
if min(w,h) < 128: |
|
continue |
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False, force_output_path=cur_output_path ) ] |
|
|
|
face_type = FaceType.fromString('full_face') |
|
|
|
io.log_info ('Performing 2nd pass...') |
|
data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run() |
|
|
|
io.log_info ('Performing 3rd pass...') |
|
ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=None).run() |
|
|
|
|
|
""" |
|
import code |
|
code.interact(local=dict(globals(), **locals())) |
|
|
|
data_len = len(data) |
|
i = 0 |
|
while i < data_len-1: |
|
i_name = Path(data[i].filename).parent.name |
|
|
|
sub_data = [] |
|
|
|
for j in range (i, data_len): |
|
j_name = Path(data[j].filename).parent.name |
|
if i_name == j_name: |
|
sub_data += [ data[j] ] |
|
else: |
|
break |
|
i = j |
|
|
|
cur_output_path = output_path / i_name |
|
|
|
io.log_info (f"Processing: {str(cur_output_path)}, {i}/{data_len} ") |
|
|
|
if not cur_output_path.exists(): |
|
cur_output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for dir_name in dir_names: |
|
|
|
cur_input_path = input_path / dir_name |
|
cur_output_path = output_path / dir_name |
|
|
|
input_path_image_paths = pathex.get_image_paths(cur_input_path) |
|
l = len(input_path_image_paths) |
|
#if l < 250 or l > 350: |
|
# continue |
|
|
|
io.log_info (f"Processing: {str(cur_input_path)} ") |
|
|
|
if not cur_output_path.exists(): |
|
cur_output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
data = [] |
|
for filename in input_path_image_paths: |
|
filename_path = Path(filename) |
|
|
|
name = filename_path.parent.name + '/' + filename_path.stem |
|
if name not in bb_dict: |
|
continue |
|
|
|
bb = bb_dict[name] |
|
l,t,w,h = bb |
|
if min(w,h) < 128: |
|
continue |
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename,rects=[ (l,t,l+w,t+h) ], landmarks_accurate=False ) ] |
|
|
|
|
|
|
|
io.log_info ('Performing 2nd pass...') |
|
data = ExtractSubprocessor (data, 'landmarks', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False).run() |
|
|
|
io.log_info ('Performing 3rd pass...') |
|
data = ExtractSubprocessor (data, 'final', 256, face_type, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False, final_output_path=cur_output_path).run() |
|
|
|
|
|
io.log_info (f"Sorting: {str(cur_output_path)} ") |
|
Sorter.main (input_path=str(cur_output_path), sort_by_method='hist') |
|
|
|
import code |
|
code.interact(local=dict(globals(), **locals())) |
|
|
|
#try: |
|
# io.log_info (f"Removing: {str(cur_input_path)} ") |
|
# shutil.rmtree(cur_input_path) |
|
#except: |
|
# io.log_info (f"unable to remove: {str(cur_input_path)} ") |
|
|
|
|
|
|
|
|
|
def extract_vggface2_dataset(input_dir, device_args={} ): |
|
multi_gpu = device_args.get('multi_gpu', False) |
|
cpu_only = device_args.get('cpu_only', False) |
|
|
|
input_path = Path(input_dir) |
|
if not input_path.exists(): |
|
raise ValueError('Input directory not found. Please ensure it exists.') |
|
|
|
output_path = input_path.parent / (input_path.name + '_out') |
|
|
|
dir_names = pathex.get_all_dir_names(input_path) |
|
|
|
if not output_path.exists(): |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
for dir_name in dir_names: |
|
|
|
cur_input_path = input_path / dir_name |
|
cur_output_path = output_path / dir_name |
|
|
|
l = len(pathex.get_image_paths(cur_input_path)) |
|
if l < 250 or l > 350: |
|
continue |
|
|
|
io.log_info (f"Processing: {str(cur_input_path)} ") |
|
|
|
if not cur_output_path.exists(): |
|
cur_output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
Extractor.main( str(cur_input_path), |
|
str(cur_output_path), |
|
detector='s3fd', |
|
image_size=256, |
|
face_type='full_face', |
|
max_faces_from_image=1, |
|
device_args=device_args ) |
|
|
|
io.log_info (f"Sorting: {str(cur_input_path)} ") |
|
Sorter.main (input_path=str(cur_output_path), sort_by_method='hist') |
|
|
|
try: |
|
io.log_info (f"Removing: {str(cur_input_path)} ") |
|
shutil.rmtree(cur_input_path) |
|
except: |
|
io.log_info (f"unable to remove: {str(cur_input_path)} ") |
|
|
|
""" |
|
|
|
|
|
def dev_test_68(input_dir ): |
|
|
|
input_path = Path(input_dir) |
|
if not input_path.exists(): |
|
raise ValueError('input_dir not found. Please ensure it exists.') |
|
|
|
output_path = input_path.parent / (input_path.name+'_aligned') |
|
|
|
io.log_info(f'Output dir is % {output_path}') |
|
|
|
if output_path.exists(): |
|
output_images_paths = pathex.get_image_paths(output_path) |
|
if len(output_images_paths) > 0: |
|
io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False ) |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
else: |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
images_paths = pathex.get_image_paths(input_path) |
|
|
|
for filepath in io.progress_bar_generator(images_paths, "Processing"): |
|
filepath = Path(filepath) |
|
|
|
|
|
pts_filepath = filepath.parent / (filepath.stem+'.pts') |
|
if pts_filepath.exists(): |
|
pts = pts_filepath.read_text() |
|
pts_lines = pts.split('\n') |
|
|
|
lmrk_lines = None |
|
for pts_line in pts_lines: |
|
if pts_line == '{': |
|
lmrk_lines = [] |
|
elif pts_line == '}': |
|
break |
|
else: |
|
if lmrk_lines is not None: |
|
lmrk_lines.append (pts_line) |
|
|
|
if lmrk_lines is not None and len(lmrk_lines) == 68: |
|
try: |
|
lmrks = [ np.array ( lmrk_line.strip().split(' ') ).astype(np.float32).tolist() for lmrk_line in lmrk_lines] |
|
except Exception as e: |
|
print(e) |
|
print(filepath) |
|
continue |
|
|
|
rect = LandmarksProcessor.get_rect_from_landmarks(lmrks) |
|
|
|
output_filepath = output_path / (filepath.stem+'.jpg') |
|
|
|
img = cv2_imread(filepath) |
|
img = imagelib.normalize_channels(img, 3) |
|
cv2_imwrite(output_filepath, img, [int(cv2.IMWRITE_JPEG_QUALITY), 95] ) |
|
|
|
raise Exception("unimplemented") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
io.log_info("Done.") |
|
|
|
|
|
def extract_umd_csv(input_file_csv, |
|
face_type='full_face', |
|
device_args={} ): |
|
|
|
|
|
multi_gpu = device_args.get('multi_gpu', False) |
|
cpu_only = device_args.get('cpu_only', False) |
|
face_type = FaceType.fromString(face_type) |
|
|
|
input_file_csv_path = Path(input_file_csv) |
|
if not input_file_csv_path.exists(): |
|
raise ValueError('input_file_csv not found. Please ensure it exists.') |
|
|
|
input_file_csv_root_path = input_file_csv_path.parent |
|
output_path = input_file_csv_path.parent / ('aligned_' + input_file_csv_path.name) |
|
|
|
io.log_info("Output dir is %s." % (str(output_path)) ) |
|
|
|
if output_path.exists(): |
|
output_images_paths = pathex.get_image_paths(output_path) |
|
if len(output_images_paths) > 0: |
|
io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False ) |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
else: |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
try: |
|
with open( str(input_file_csv_path), 'r') as f: |
|
csv_file = f.read() |
|
except Exception as e: |
|
io.log_err("Unable to open or read file " + str(input_file_csv_path) + ": " + str(e) ) |
|
return |
|
|
|
strings = csv_file.split('\n') |
|
keys = strings[0].split(',') |
|
keys_len = len(keys) |
|
csv_data = [] |
|
for i in range(1, len(strings)): |
|
values = strings[i].split(',') |
|
if keys_len != len(values): |
|
io.log_err("Wrong string in csv file, skipping.") |
|
continue |
|
|
|
csv_data += [ { keys[n] : values[n] for n in range(keys_len) } ] |
|
|
|
data = [] |
|
for d in csv_data: |
|
filename = input_file_csv_root_path / d['FILE'] |
|
|
|
|
|
x,y,w,h = float(d['FACE_X']), float(d['FACE_Y']), float(d['FACE_WIDTH']), float(d['FACE_HEIGHT']) |
|
|
|
data += [ ExtractSubprocessor.Data(filename=filename, rects=[ [x,y,x+w,y+h] ]) ] |
|
|
|
images_found = len(data) |
|
faces_detected = 0 |
|
if len(data) > 0: |
|
io.log_info ("Performing 2nd pass from csv file...") |
|
data = ExtractSubprocessor (data, 'landmarks', multi_gpu=multi_gpu, cpu_only=cpu_only).run() |
|
|
|
io.log_info ('Performing 3rd pass...') |
|
data = ExtractSubprocessor (data, 'final', face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run() |
|
faces_detected += sum([d.faces_detected for d in data]) |
|
|
|
|
|
io.log_info ('-------------------------') |
|
io.log_info ('Images found: %d' % (images_found) ) |
|
io.log_info ('Faces detected: %d' % (faces_detected) ) |
|
io.log_info ('-------------------------') |
|
|
|
|
|
|
|
def dev_test1(input_dir): |
|
|
|
|
|
image_size = 1024 |
|
face_type = FaceType.HEAD |
|
|
|
input_path = Path(input_dir) |
|
images_path = input_path / 'images' |
|
if not images_path.exists: |
|
raise ValueError('LaPa dataset: images folder not found.') |
|
labels_path = input_path / 'labels' |
|
if not labels_path.exists: |
|
raise ValueError('LaPa dataset: labels folder not found.') |
|
landmarks_path = input_path / 'landmarks' |
|
if not landmarks_path.exists: |
|
raise ValueError('LaPa dataset: landmarks folder not found.') |
|
|
|
output_path = input_path / 'out' |
|
if output_path.exists(): |
|
output_images_paths = pathex.get_image_paths(output_path) |
|
if len(output_images_paths) != 0: |
|
io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n") |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
data = [] |
|
|
|
img_paths = pathex.get_image_paths (images_path) |
|
for filename in img_paths: |
|
filepath = Path(filename) |
|
|
|
landmark_filepath = landmarks_path / (filepath.stem + '.txt') |
|
if not landmark_filepath.exists(): |
|
raise ValueError(f'no landmarks for {filepath}') |
|
|
|
|
|
|
|
lm = landmark_filepath.read_text() |
|
lm = lm.split('\n') |
|
if int(lm[0]) != 106: |
|
raise ValueError(f'wrong landmarks format in {landmark_filepath}') |
|
|
|
lmrks = [] |
|
for i in range(106): |
|
x,y = lm[i+1].split(' ') |
|
x,y = float(x), float(y) |
|
lmrks.append ( (x,y) ) |
|
|
|
lmrks = np.array(lmrks) |
|
|
|
l,t = np.min(lmrks, 0) |
|
r,b = np.max(lmrks, 0) |
|
|
|
l,t,r,b = ( int(x) for x in (l,t,r,b) ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data += [ ExtractSubprocessor.Data(filepath=filepath, rects=[ (l,t,r,b) ]) ] |
|
|
|
|
|
|
|
|
|
if len(data) > 0: |
|
device_config = nn.DeviceConfig.BestGPU() |
|
|
|
io.log_info ("Performing 2nd pass...") |
|
data = ExtractSubprocessor (data, 'landmarks', image_size, 95, face_type, device_config=device_config).run() |
|
io.log_info ("Performing 3rd pass...") |
|
data = ExtractSubprocessor (data, 'final', image_size, 95, face_type, final_output_path=output_path, device_config=device_config).run() |
|
|
|
|
|
for filename in pathex.get_image_paths (output_path): |
|
filepath = Path(filename) |
|
|
|
|
|
dflimg = DFLJPG.load(filepath) |
|
|
|
src_filename = dflimg.get_source_filename() |
|
image_to_face_mat = dflimg.get_image_to_face_mat() |
|
|
|
label_filepath = labels_path / ( Path(src_filename).stem + '.png') |
|
if not label_filepath.exists(): |
|
raise ValueError(f'{label_filepath} does not exist') |
|
|
|
mask = cv2_imread(label_filepath) |
|
|
|
mask[mask > 0] = 1 |
|
mask = cv2.warpAffine(mask, image_to_face_mat, (image_size, image_size), cv2.INTER_LINEAR) |
|
mask = cv2.blur(mask, (3,3) ) |
|
|
|
|
|
|
|
|
|
dflimg.set_xseg_mask(mask) |
|
dflimg.save() |
|
|
|
|
|
import code |
|
code.interact(local=dict(globals(), **locals())) |
|
|
|
|
|
def dev_resave_pngs(input_dir): |
|
input_path = Path(input_dir) |
|
if not input_path.exists(): |
|
raise ValueError('input_dir not found. Please ensure it exists.') |
|
|
|
images_paths = pathex.get_image_paths(input_path, image_extensions=['.png'], subdirs=True, return_Path_class=True) |
|
|
|
for filepath in io.progress_bar_generator(images_paths,"Processing"): |
|
cv2_imwrite(filepath, cv2_imread(filepath)) |
|
|
|
|
|
def dev_segmented_trash(input_dir): |
|
input_path = Path(input_dir) |
|
if not input_path.exists(): |
|
raise ValueError('input_dir not found. Please ensure it exists.') |
|
|
|
output_path = input_path.parent / (input_path.name+'_trash') |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
images_paths = pathex.get_image_paths(input_path, return_Path_class=True) |
|
|
|
trash_paths = [] |
|
for filepath in images_paths: |
|
json_file = filepath.parent / (filepath.stem +'.json') |
|
if not json_file.exists(): |
|
trash_paths.append(filepath) |
|
|
|
for filepath in trash_paths: |
|
|
|
try: |
|
filepath.rename ( output_path / filepath.name ) |
|
except: |
|
io.log_info ('fail to trashing %s' % (src.name) ) |
|
|
|
|
|
|
|
def dev_test(input_dir): |
|
""" |
|
extract FaceSynthetics dataset https://github.com/microsoft/FaceSynthetics |
|
|
|
BACKGROUND = 0 |
|
SKIN = 1 |
|
NOSE = 2 |
|
RIGHT_EYE = 3 |
|
LEFT_EYE = 4 |
|
RIGHT_BROW = 5 |
|
LEFT_BROW = 6 |
|
RIGHT_EAR = 7 |
|
LEFT_EAR = 8 |
|
MOUTH_INTERIOR = 9 |
|
TOP_LIP = 10 |
|
BOTTOM_LIP = 11 |
|
NECK = 12 |
|
HAIR = 13 |
|
BEARD = 14 |
|
CLOTHING = 15 |
|
GLASSES = 16 |
|
HEADWEAR = 17 |
|
FACEWEAR = 18 |
|
IGNORE = 255 |
|
""" |
|
|
|
|
|
image_size = 1024 |
|
face_type = FaceType.WHOLE_FACE |
|
|
|
input_path = Path(input_dir) |
|
|
|
|
|
|
|
output_path = input_path.parent / f'{input_path.name}_out' |
|
if output_path.exists(): |
|
output_images_paths = pathex.get_image_paths(output_path) |
|
if len(output_images_paths) != 0: |
|
io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n") |
|
for filename in output_images_paths: |
|
Path(filename).unlink() |
|
output_path.mkdir(parents=True, exist_ok=True) |
|
|
|
data = [] |
|
|
|
for filepath in io.progress_bar_generator(pathex.get_paths(input_path), "Processing"): |
|
if filepath.suffix == '.txt': |
|
|
|
image_filepath = filepath.parent / f'{filepath.name.split("_")[0]}.png' |
|
if not image_filepath.exists(): |
|
print(f'{image_filepath} does not exist, skipping') |
|
|
|
lmrks = [] |
|
for lmrk_line in filepath.read_text().split('\n'): |
|
if len(lmrk_line) == 0: |
|
continue |
|
|
|
x, y = lmrk_line.split(' ') |
|
x, y = float(x), float(y) |
|
|
|
lmrks.append( (x,y) ) |
|
|
|
lmrks = np.array(lmrks[:68], np.float32) |
|
rect = LandmarksProcessor.get_rect_from_landmarks(lmrks) |
|
data += [ ExtractSubprocessor.Data(filepath=image_filepath, rects=[rect], landmarks=[ lmrks ] ) ] |
|
|
|
if len(data) > 0: |
|
io.log_info ("Performing 3rd pass...") |
|
data = ExtractSubprocessor (data, 'final', image_size, 95, face_type, final_output_path=output_path, device_config=nn.DeviceConfig.CPU()).run() |
|
|
|
for filename in io.progress_bar_generator(pathex.get_image_paths (output_path), "Processing"): |
|
filepath = Path(filename) |
|
|
|
dflimg = DFLJPG.load(filepath) |
|
|
|
src_filename = dflimg.get_source_filename() |
|
image_to_face_mat = dflimg.get_image_to_face_mat() |
|
|
|
seg_filepath = input_path / ( Path(src_filename).stem + '_seg.png') |
|
if not seg_filepath.exists(): |
|
raise ValueError(f'{seg_filepath} does not exist') |
|
|
|
seg = cv2_imread(seg_filepath) |
|
seg_inds = np.isin(seg, [1,2,3,4,5,6,9,10,11]) |
|
seg[~seg_inds] = 0 |
|
seg[seg_inds] = 1 |
|
seg = seg.astype(np.float32) |
|
seg = cv2.warpAffine(seg, image_to_face_mat, (image_size, image_size), cv2.INTER_LANCZOS4) |
|
dflimg.set_xseg_mask(seg) |
|
dflimg.save() |
|
|