File size: 38,505 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import traceback
import math
import multiprocessing
import operator
import os
import shutil
import sys
import time
from pathlib import Path
import cv2
import numpy as np
from numpy import linalg as npla
import facelib
from core import imagelib
from core import mathlib
from facelib import FaceType, LandmarksProcessor
from core.interact import interact as io
from core.joblib import Subprocessor
from core.leras import nn
from core import pathex
from core.cv2ex import *
from DFLIMG import *
DEBUG = False
class ExtractSubprocessor(Subprocessor):
class Data(object):
def __init__(self, filepath=None, rects=None, landmarks = None, landmarks_accurate=True, manual=False, force_output_path=None, final_output_files = None):
self.filepath = filepath
self.rects = rects or []
self.rects_rotation = 0
self.landmarks_accurate = landmarks_accurate
self.manual = manual
self.landmarks = landmarks or []
self.force_output_path = force_output_path
self.final_output_files = final_output_files or []
self.faces_detected = 0
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.jpeg_quality = client_dict['jpeg_quality']
self.face_type = client_dict['face_type']
self.max_faces_from_image = client_dict['max_faces_from_image']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.final_output_path = client_dict['final_output_path']
self.output_debug_path = client_dict['output_debug_path']
#transfer and set stdin in order to work code.interact in debug subprocess
stdin_fd = client_dict['stdin_fd']
if stdin_fd is not None and DEBUG:
sys.stdin = os.fdopen(stdin_fd)
if self.cpu_only:
device_config = nn.DeviceConfig.CPU()
place_model_on_cpu = True
else:
device_config = nn.DeviceConfig.GPUIndexes ([self.device_idx])
place_model_on_cpu = device_config.devices[0].total_mem_gb < 4
if self.type == 'all' or 'rects' in self.type or 'landmarks' in self.type:
nn.initialize (device_config)
self.log_info (f"Running on {client_dict['device_name'] }")
if self.type == 'all' or self.type == 'rects-s3fd' or 'landmarks' in self.type:
self.rects_extractor = facelib.S3FDExtractor(place_model_on_cpu=place_model_on_cpu)
if self.type == 'all' or 'landmarks' in self.type:
# for head type, extract "3D landmarks"
self.landmarks_extractor = facelib.FANExtractor(landmarks_3D=self.face_type >= FaceType.HEAD,
place_model_on_cpu=place_model_on_cpu)
self.cached_image = (None, None)
#override
def process_data(self, data):
if 'landmarks' in self.type and len(data.rects) == 0:
return data
filepath = data.filepath
cached_filepath, image = self.cached_image
if cached_filepath != filepath:
image = cv2_imread( filepath )
if image is None:
self.log_err (f'Failed to open {filepath}, reason: cv2_imread() fail.')
return data
image = imagelib.normalize_channels(image, 3)
image = imagelib.cut_odd_image(image)
self.cached_image = ( filepath, image )
h, w, c = image.shape
if 'rects' in self.type or self.type == 'all':
data = ExtractSubprocessor.Cli.rects_stage (data=data,
image=image,
max_faces_from_image=self.max_faces_from_image,
rects_extractor=self.rects_extractor,
)
if 'landmarks' in self.type or self.type == 'all':
data = ExtractSubprocessor.Cli.landmarks_stage (data=data,
image=image,
landmarks_extractor=self.landmarks_extractor,
rects_extractor=self.rects_extractor,
)
if self.type == 'final' or self.type == 'all':
data = ExtractSubprocessor.Cli.final_stage(data=data,
image=image,
face_type=self.face_type,
image_size=self.image_size,
jpeg_quality=self.jpeg_quality,
output_debug_path=self.output_debug_path,
final_output_path=self.final_output_path,
)
return data
@staticmethod
def rects_stage(data,
image,
max_faces_from_image,
rects_extractor,
):
h,w,c = image.shape
if min(h,w) < 128:
# Image is too small
data.rects = []
else:
for rot in ([0, 90, 270, 180]):
if rot == 0:
rotated_image = image
elif rot == 90:
rotated_image = image.swapaxes( 0,1 )[:,::-1,:]
elif rot == 180:
rotated_image = image[::-1,::-1,:]
elif rot == 270:
rotated_image = image.swapaxes( 0,1 )[::-1,:,:]
rects = data.rects = rects_extractor.extract (rotated_image, is_bgr=True)
if len(rects) != 0:
data.rects_rotation = rot
break
if max_faces_from_image is not None and \
max_faces_from_image > 0 and \
len(data.rects) > 0:
data.rects = data.rects[0:max_faces_from_image]
return data
@staticmethod
def landmarks_stage(data,
image,
landmarks_extractor,
rects_extractor,
):
h, w, ch = image.shape
if data.rects_rotation == 0:
rotated_image = image
elif data.rects_rotation == 90:
rotated_image = image.swapaxes( 0,1 )[:,::-1,:]
elif data.rects_rotation == 180:
rotated_image = image[::-1,::-1,:]
elif data.rects_rotation == 270:
rotated_image = image.swapaxes( 0,1 )[::-1,:,:]
data.landmarks = landmarks_extractor.extract (rotated_image, data.rects, rects_extractor if (data.landmarks_accurate) else None, is_bgr=True)
if data.rects_rotation != 0:
for i, (rect, lmrks) in enumerate(zip(data.rects, data.landmarks)):
new_rect, new_lmrks = rect, lmrks
(l,t,r,b) = rect
if data.rects_rotation == 90:
new_rect = ( t, h-l, b, h-r)
if lmrks is not None:
new_lmrks = lmrks[:,::-1].copy()
new_lmrks[:,1] = h - new_lmrks[:,1]
elif data.rects_rotation == 180:
if lmrks is not None:
new_rect = ( w-l, h-t, w-r, h-b)
new_lmrks = lmrks.copy()
new_lmrks[:,0] = w - new_lmrks[:,0]
new_lmrks[:,1] = h - new_lmrks[:,1]
elif data.rects_rotation == 270:
new_rect = ( w-b, l, w-t, r )
if lmrks is not None:
new_lmrks = lmrks[:,::-1].copy()
new_lmrks[:,0] = w - new_lmrks[:,0]
data.rects[i], data.landmarks[i] = new_rect, new_lmrks
return data
@staticmethod
def final_stage(data,
image,
face_type,
image_size,
jpeg_quality,
output_debug_path=None,
final_output_path=None,
):
data.final_output_files = []
filepath = data.filepath
rects = data.rects
landmarks = data.landmarks
if output_debug_path is not None:
debug_image = image.copy()
face_idx = 0
for rect, image_landmarks in zip( rects, landmarks ):
if image_landmarks is None:
continue
rect = np.array(rect)
if face_type == FaceType.MARK_ONLY:
image_to_face_mat = None
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, image_size, face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (image_size, image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
landmarks_bbox = LandmarksProcessor.transform_points ( [ (0,0), (0,image_size-1), (image_size-1, image_size-1), (image_size-1,0) ], image_to_face_mat, True)
rect_area = mathlib.polygon_area(np.array(rect[[0,2,2,0]]).astype(np.float32), np.array(rect[[1,1,3,3]]).astype(np.float32))
landmarks_area = mathlib.polygon_area(landmarks_bbox[:,0].astype(np.float32), landmarks_bbox[:,1].astype(np.float32) )
if not data.manual and face_type <= FaceType.FULL_NO_ALIGN and landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
if output_debug_path is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, face_type, image_size, transparent_mask=True)
output_path = final_output_path
if data.force_output_path is not None:
output_path = data.force_output_path
output_filepath = output_path / f"{filepath.stem}_{face_idx}.jpg"
cv2_imwrite(output_filepath, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_quality ] )
dflimg = DFLJPG.load(output_filepath)
dflimg.set_face_type(FaceType.toString(face_type))
dflimg.set_landmarks(face_image_landmarks.tolist())
dflimg.set_source_filename(filepath.name)
dflimg.set_source_rect(rect)
dflimg.set_source_landmarks(image_landmarks.tolist())
dflimg.set_image_to_face_mat(image_to_face_mat)
dflimg.save()
data.final_output_files.append (output_filepath)
face_idx += 1
data.faces_detected = face_idx
if output_debug_path is not None:
cv2_imwrite( output_debug_path / (filepath.stem+'.jpg'), debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
return data
#overridable
def get_data_name (self, data):
#return string identificator of your data
return data.filepath
@staticmethod
def get_devices_for_config (type, device_config):
devices = device_config.devices
cpu_only = len(devices) == 0
if 'rects' in type or \
'landmarks' in type or \
'all' in type:
if not cpu_only:
if type == 'landmarks-manual':
devices = [devices.get_best_device()]
result = []
for device in devices:
count = 1
if count == 1:
result += [ (device.index, 'GPU', device.name, device.total_mem_gb) ]
else:
for i in range(count):
result += [ (device.index, 'GPU', f"{device.name} #{i}", device.total_mem_gb) ]
return result
else:
if type == 'landmarks-manual':
return [ (0, 'CPU', 'CPU', 0 ) ]
else:
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
elif type == 'final':
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]
def __init__(self, input_data, type, image_size=None, jpeg_quality=None, face_type=None, output_debug_path=None, manual_window_size=0, max_faces_from_image=0, final_output_path=None, device_config=None):
if type == 'landmarks-manual':
for x in input_data:
x.manual = True
self.input_data = input_data
self.type = type
self.image_size = image_size
self.jpeg_quality = jpeg_quality
self.face_type = face_type
self.output_debug_path = output_debug_path
self.final_output_path = final_output_path
self.manual_window_size = manual_window_size
self.max_faces_from_image = max_faces_from_image
self.result = []
self.devices = ExtractSubprocessor.get_devices_for_config(self.type, device_config)
super().__init__('Extractor', ExtractSubprocessor.Cli,
999999 if type == 'landmarks-manual' or DEBUG else 120)
#override
def on_clients_initialized(self):
if self.type == 'landmarks-manual':
self.wnd_name = 'Manual pass'
io.named_window(self.wnd_name)
io.capture_mouse(self.wnd_name)
io.capture_keys(self.wnd_name)
self.cache_original_image = (None, None)
self.cache_image = (None, None)
self.cache_text_lines_img = (None, None)
self.hide_help = False
self.landmarks_accurate = True
self.force_landmarks = False
self.landmarks = None
self.x = 0
self.y = 0
self.rect_size = 100
self.rect_locked = False
self.extract_needed = True
self.image = None
self.image_filepath = None
io.progress_bar (None, len (self.input_data))
#override
def on_clients_finalized(self):
if self.type == 'landmarks-manual':
io.destroy_all_windows()
io.progress_bar_close()
#override
def process_info_generator(self):
base_dict = {'type' : self.type,
'image_size': self.image_size,
'jpeg_quality' : self.jpeg_quality,
'face_type': self.face_type,
'max_faces_from_image':self.max_faces_from_image,
'output_debug_path': self.output_debug_path,
'final_output_path': self.final_output_path,
'stdin_fd': sys.stdin.fileno() }
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name
client_dict['device_type'] = device_type
yield client_dict['device_name'], {}, client_dict
#override
def get_data(self, host_dict):
if self.type == 'landmarks-manual':
need_remark_face = False
while len (self.input_data) > 0:
data = self.input_data[0]
filepath, data_rects, data_landmarks = data.filepath, data.rects, data.landmarks
is_frame_done = False
if self.image_filepath != filepath:
self.image_filepath = filepath
if self.cache_original_image[0] == filepath:
self.original_image = self.cache_original_image[1]
else:
self.original_image = imagelib.normalize_channels( cv2_imread( filepath ), 3 )
self.cache_original_image = (filepath, self.original_image )
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
if self.cache_image[0] == (h,w,c) + (self.view_scale,filepath):
self.image = self.cache_image[1]
else:
self.image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
self.cache_image = ( (h,w,c) + (self.view_scale,filepath), self.image )
(h,w,c) = self.image.shape
sh = (0,0, w, min(100, h) )
if self.cache_text_lines_img[0] == sh:
self.text_lines_img = self.cache_text_lines_img[1]
else:
self.text_lines_img = (imagelib.get_draw_text_lines ( self.image, sh,
[ '[L Mouse click] - lock/unlock selection. [Mouse wheel] - change rect',
'[R Mouse Click] - manual face rectangle',
'[Enter] / [Space] - confirm / skip frame',
'[,] [.]- prev frame, next frame. [Q] - skip remaining frames',
'[a] - accuracy on/off (more fps)',
'[h] - hide this help'
], (1, 1, 1) )*255).astype(np.uint8)
self.cache_text_lines_img = (sh, self.text_lines_img)
if need_remark_face: # need remark image from input data that already has a marked face?
need_remark_face = False
if len(data_rects) != 0: # If there was already a face then lock the rectangle to it until the mouse is clicked
self.rect = data_rects.pop()
self.landmarks = data_landmarks.pop()
data_rects.clear()
data_landmarks.clear()
self.rect_locked = True
self.rect_size = ( self.rect[2] - self.rect[0] ) / 2
self.x = ( self.rect[0] + self.rect[2] ) / 2
self.y = ( self.rect[1] + self.rect[3] ) / 2
self.redraw()
if len(data_rects) == 0:
(h,w,c) = self.image.shape
while True:
io.process_messages(0.0001)
if not self.force_landmarks:
new_x = self.x
new_y = self.y
new_rect_size = self.rect_size
mouse_events = io.get_mouse_events(self.wnd_name)
for ev in mouse_events:
(x, y, ev, flags) = ev
if ev == io.EVENT_MOUSEWHEEL and not self.rect_locked:
mod = 1 if flags > 0 else -1
diff = 1 if new_rect_size <= 40 else np.clip(new_rect_size / 10, 1, 10)
new_rect_size = max (5, new_rect_size + diff*mod)
elif ev == io.EVENT_LBUTTONDOWN:
if self.force_landmarks:
self.x = new_x
self.y = new_y
self.force_landmarks = False
self.rect_locked = True
self.redraw()
else:
self.rect_locked = not self.rect_locked
self.extract_needed = True
elif ev == io.EVENT_RBUTTONDOWN:
self.force_landmarks = not self.force_landmarks
if self.force_landmarks:
self.rect_locked = False
elif not self.rect_locked:
new_x = np.clip (x, 0, w-1) / self.view_scale
new_y = np.clip (y, 0, h-1) / self.view_scale
key_events = io.get_key_events(self.wnd_name)
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
if key == ord('\r') or key == ord('\n'):
#confirm frame
is_frame_done = True
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
break
elif key == ord(' '):
#confirm skip frame
is_frame_done = True
break
elif key == ord(',') and len(self.result) > 0:
#go prev frame
if self.rect_locked:
self.rect_locked = False
# Only save the face if the rect is still locked
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
self.input_data.insert(0, self.result.pop() )
io.progress_bar_inc(-1)
need_remark_face = True
break
elif key == ord('.'):
#go next frame
if self.rect_locked:
self.rect_locked = False
# Only save the face if the rect is still locked
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
need_remark_face = True
is_frame_done = True
break
elif key == ord('q'):
#skip remaining
if self.rect_locked:
self.rect_locked = False
data_rects.append (self.rect)
data_landmarks.append (self.landmarks)
while len(self.input_data) > 0:
self.result.append( self.input_data.pop(0) )
io.progress_bar_inc(1)
break
elif key == ord('h'):
self.hide_help = not self.hide_help
break
elif key == ord('a'):
self.landmarks_accurate = not self.landmarks_accurate
break
if self.force_landmarks:
pt2 = np.float32([new_x, new_y])
pt1 = np.float32([self.x, self.y])
pt_vec_len = npla.norm(pt2-pt1)
pt_vec = pt2-pt1
if pt_vec_len != 0:
pt_vec /= pt_vec_len
self.rect_size = pt_vec_len
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
if pt_vec_len > 0:
lmrks = np.concatenate ( (np.zeros ((17,2), np.float32), LandmarksProcessor.landmarks_2D), axis=0 )
lmrks -= lmrks[30:31,:]
mat = cv2.getRotationMatrix2D( (0, 0), -np.arctan2( pt_vec[1], pt_vec[0] )*180/math.pi , pt_vec_len)
mat[:, 2] += (self.x, self.y)
self.landmarks = LandmarksProcessor.transform_points(lmrks, mat )
self.redraw()
elif self.x != new_x or \
self.y != new_y or \
self.rect_size != new_rect_size or \
self.extract_needed:
self.x = new_x
self.y = new_y
self.rect_size = new_rect_size
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
return ExtractSubprocessor.Data (filepath, rects=[self.rect], landmarks_accurate=self.landmarks_accurate)
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
io.progress_bar_inc(1)
self.extract_needed = True
self.rect_locked = False
else:
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
if not self.type != 'landmarks-manual':
self.input_data.insert(0, data)
def redraw(self):
(h,w,c) = self.image.shape
if not self.hide_help:
image = cv2.addWeighted (self.image,1.0,self.text_lines_img,1.0,0)
else:
image = self.image.copy()
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
if self.rect_size <= 40:
scaled_rect_size = h // 3 if w > h else w // 3
p1 = (self.x - self.rect_size, self.y - self.rect_size)
p2 = (self.x + self.rect_size, self.y - self.rect_size)
p3 = (self.x - self.rect_size, self.y + self.rect_size)
wh = h if h < w else w
np1 = (w / 2 - wh / 4, h / 2 - wh / 4)
np2 = (w / 2 + wh / 4, h / 2 - wh / 4)
np3 = (w / 2 - wh / 4, h / 2 + wh / 4)
mat = cv2.getAffineTransform( np.float32([p1,p2,p3])*self.view_scale, np.float32([np1,np2,np3]) )
image = cv2.warpAffine(image, mat,(w,h) )
view_landmarks = LandmarksProcessor.transform_points (view_landmarks, mat)
landmarks_color = (255,255,0) if self.rect_locked else (0,255,0)
LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.face_type, self.image_size, landmarks_color=landmarks_color)
self.extract_needed = False
io.show_image (self.wnd_name, image)
#override
def on_result (self, host_dict, data, result):
if self.type == 'landmarks-manual':
filepath, landmarks = result.filepath, result.landmarks
if len(landmarks) != 0 and landmarks[0] is not None:
self.landmarks = landmarks[0]
self.redraw()
else:
self.result.append ( result )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def process_data(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_paths, debug_paths ):
self.input_paths = input_paths
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
self.result = []
super().__init__('DeletedFilesSearcherSubprocessor', DeletedFilesSearcherSubprocessor.Cli, 60)
#override
def process_info_generator(self):
for i in range(min(multiprocessing.cpu_count(), 8)):
yield 'CPU%d' % (i), {}, {'debug_paths_stems' : self.debug_paths_stems}
#override
def on_clients_initialized(self):
io.progress_bar ("Searching deleted files", len (self.input_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.input_paths) > 0:
return [self.input_paths.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.input_paths.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
if result == False:
self.result.append( data[0] )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
def main(detector=None,
input_path=None,
output_path=None,
output_debug=None,
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
face_type='full_face',
max_faces_from_image=None,
image_size=None,
jpeg_quality=None,
cpu_only = False,
force_gpu_idxs = None,
):
if not input_path.exists():
io.log_err ('Input directory not found. Please ensure it exists.')
return
if not output_path.exists():
output_path.mkdir(parents=True, exist_ok=True)
if face_type is not None:
face_type = FaceType.fromString(face_type)
if face_type is None:
if manual_output_debug_fix:
files = pathex.get_image_paths(output_path)
if len(files) != 0:
dflimg = DFLIMG.load(Path(files[0]))
if dflimg is not None and dflimg.has_data():
face_type = FaceType.fromString ( dflimg.get_face_type() )
input_image_paths = pathex.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
output_images_paths = pathex.get_image_paths(output_path)
output_debug_path = output_path.parent / (output_path.name + '_debug')
continue_extraction = False
if not manual_output_debug_fix and len(output_images_paths) > 0:
if len(output_images_paths) > 128:
continue_extraction = io.input_bool ("Continue extraction?", True, help_message="Extraction can be continued, but you must specify the same options again.")
if len(output_images_paths) > 128 and continue_extraction:
try:
input_image_paths = input_image_paths[ [ Path(x).stem for x in input_image_paths ].index ( Path(output_images_paths[-128]).stem.split('_')[0] ) : ]
except:
io.log_err("Error in fetching the last index. Extraction cannot be continued.")
return
elif input_path != output_path:
io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n")
for filename in output_images_paths:
Path(filename).unlink()
device_config = nn.DeviceConfig.GPUIndexes( force_gpu_idxs or nn.ask_choose_device_idxs(choose_only_one=detector=='manual', suggest_all_gpu=True) ) \
if not cpu_only else nn.DeviceConfig.CPU()
if face_type is None:
face_type = io.input_str ("Face type", 'wf', ['f','wf','head'], help_message="Full face / whole face / head. 'Whole face' covers full area of face include forehead. 'head' covers full head, but requires XSeg for src and dst faceset.").lower()
face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[face_type]
if max_faces_from_image is None:
max_faces_from_image = io.input_int(f"Max number of faces from image", 0, help_message="If you extract a src faceset that has frames with a large number of faces, it is advisable to set max faces to 3 to speed up extraction. 0 - unlimited")
if image_size is None:
image_size = io.input_int(f"Image size", 512 if face_type < FaceType.HEAD else 768, valid_range=[256,2048], help_message="Output image size. The higher image size, the worse face-enhancer works. Use higher than 512 value only if the source image is sharp enough and the face does not need to be enhanced.")
if jpeg_quality is None:
jpeg_quality = io.input_int(f"Jpeg quality", 90, valid_range=[1,100], help_message="Jpeg quality. The higher jpeg quality the larger the output file size.")
if detector is None:
io.log_info ("Choose detector type.")
io.log_info ("[0] S3FD")
io.log_info ("[1] manual")
detector = {0:'s3fd', 1:'manual'}[ io.input_int("", 0, [0,1]) ]
if output_debug is None:
output_debug = io.input_bool (f"Write debug images to {output_debug_path.name}?", False)
if output_debug:
output_debug_path.mkdir(parents=True, exist_ok=True)
if manual_output_debug_fix:
if not output_debug_path.exists():
io.log_err(f'{output_debug_path} not found. Re-extract faces with "Write debug images" option.')
return
else:
detector = 'manual'
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_image_paths = DeletedFilesSearcherSubprocessor (input_image_paths, pathex.get_image_paths(output_debug_path) ).run()
input_image_paths = sorted (input_image_paths)
io.log_info('Found %d images.' % (len(input_image_paths)))
else:
if not continue_extraction and output_debug_path.exists():
for filename in pathex.get_image_paths(output_debug_path):
Path(filename).unlink()
images_found = len(input_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
io.log_info ('Performing manual extract...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_image_paths ], 'landmarks-manual', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()
io.log_info ('Performing 3rd pass...')
data = ExtractSubprocessor (data, 'final', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()
else:
io.log_info ('Extracting faces...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(Path(filename)) for filename in input_image_paths ],
'all',
image_size,
jpeg_quality,
face_type,
output_debug_path if output_debug else None,
max_faces_from_image=max_faces_from_image,
final_output_path=output_path,
device_config=device_config).run()
faces_detected += sum([d.faces_detected for d in data])
if manual_fix:
if all ( np.array ( [ d.faces_detected > 0 for d in data] ) == True ):
io.log_info ('All faces are detected, manual fix not needed.')
else:
fix_data = [ ExtractSubprocessor.Data(d.filepath) for d in data if d.faces_detected == 0 ]
io.log_info ('Performing manual fix for %d images...' % (len(fix_data)) )
fix_data = ExtractSubprocessor (fix_data, 'landmarks-manual', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, manual_window_size=manual_window_size, device_config=device_config).run()
fix_data = ExtractSubprocessor (fix_data, 'final', image_size, jpeg_quality, face_type, output_debug_path if output_debug else None, final_output_path=output_path, device_config=device_config).run()
faces_detected += sum([d.faces_detected for d in fix_data])
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')
|