File size: 9,491 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import multiprocessing
import pickle
import time
import traceback
from enum import IntEnum
import cv2
import numpy as np
from core import imagelib, mplib, pathex
from core.imagelib import sd
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import SubprocessGenerator, ThisThreadGenerator
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType)
class SampleGeneratorFaceAvatarOperator(SampleGeneratorBase):
def __init__ (self, root_path, debug=False, batch_size=1, resolution=256, face_type=None,
generators_count=4, data_format="NHWC",
**kwargs):
super().__init__(debug, batch_size)
self.initialized = False
dataset_path = root_path / 'AvatarOperatorDataset'
if not dataset_path.exists():
raise ValueError(f'Unable to find {dataset_path}')
chains_dir_names = pathex.get_all_dir_names(dataset_path)
samples = SampleLoader.load (SampleType.FACE, dataset_path, subdirs=True)
sample_idx_by_path = { sample.filename : i for i,sample in enumerate(samples) }
kf_idxs = []
for chain_dir_name in chains_dir_names:
chain_root_path = dataset_path / chain_dir_name
subchain_dir_names = pathex.get_all_dir_names(chain_root_path)
try:
subchain_dir_names.sort(key=int)
except:
raise Exception(f'{chain_root_path} must contain only numerical name of directories')
chain_samples = []
for subchain_dir_name in subchain_dir_names:
subchain_root = chain_root_path / subchain_dir_name
subchain_samples = [ sample_idx_by_path[image_path] for image_path in pathex.get_image_paths(subchain_root) \
if image_path in sample_idx_by_path ]
if len(subchain_samples) < 3:
raise Exception(f'subchain {subchain_dir_name} must contain at least 3 faces. If you delete this subchain, then th echain will be corrupted.')
chain_samples += [ subchain_samples ]
chain_samples_len = len(chain_samples)
for i in range(chain_samples_len-1):
kf_idxs += [ ( chain_samples[i+1][0], chain_samples[i][-1], chain_samples[i][:-1] ) ]
for i in range(1,chain_samples_len):
kf_idxs += [ ( chain_samples[i-1][-1], chain_samples[i][0], chain_samples[i][1:] ) ]
if self.debug:
self.generators_count = 1
else:
self.generators_count = max(1, generators_count)
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (samples, kf_idxs, resolution, face_type, data_format) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (samples, kf_idxs, resolution, face_type, data_format), start_now=False ) \
for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators )
self.generator_counter = -1
self.initialized = True
#overridable
def is_initialized(self):
return self.initialized
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
samples, kf_idxs, resolution, face_type, data_format = param
kf_idxs_len = len(kf_idxs)
shuffle_idxs = []
idxs = [*range(len(samples))]
random_flip = True
rotation_range=[-10,10]
scale_range=[-0.05, 0.05]
tx_range=[-0.05, 0.05]
ty_range=[-0.05, 0.05]
bs = self.batch_size
while True:
batches = [ [], [] , [], [], [], [] ]
n_batch = 0
while n_batch < bs:
try:
if len(shuffle_idxs) == 0:
shuffle_idxs = idxs.copy()
np.random.shuffle(shuffle_idxs)
idx = shuffle_idxs.pop()
key_idx, key_chain_idx, chain_idxs = kf_idxs[ np.random.randint(kf_idxs_len) ]
key_sample = samples[key_idx]
key_chain_sample = samples[key_chain_idx]
chain_sample = samples[ chain_idxs[np.random.randint(len(chain_idxs)) ] ]
#print('==========')
#print(key_sample.filename)
#print(key_chain_sample.filename)
#print(chain_sample.filename)
sample = samples[idx]
img = sample.load_bgr()
key_img = key_sample.load_bgr()
key_chain_img = key_chain_sample.load_bgr()
chain_img = chain_sample.load_bgr()
h,w,c = img.shape
mask = LandmarksProcessor.get_image_hull_mask (img.shape, sample.landmarks)
mask = np.clip(mask, 0, 1)
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range )
if face_type == sample.face_type:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
key_img = cv2.resize( key_img, (resolution, resolution), cv2.INTER_CUBIC )
key_chain_img = cv2.resize( key_chain_img, (resolution, resolution), cv2.INTER_CUBIC )
chain_img = cv2.resize( chain_img, (resolution, resolution), cv2.INTER_CUBIC )
mask = cv2.resize( mask, (resolution, resolution), cv2.INTER_CUBIC )
else:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
key_img = cv2.warpAffine( key_img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
key_chain_img = cv2.warpAffine( key_chain_img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
chain_img = cv2.warpAffine( chain_img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_CUBIC )
if len(mask.shape) == 2:
mask = mask[...,None]
img_warped = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=True)
img_transformed = imagelib.warp_by_params (warp_params, img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False)
key_img = imagelib.warp_by_params (warp_params, key_img, can_warp=False, can_transform=False, can_flip=False, border_replicate=True)
key_chain_img = imagelib.warp_by_params (warp_params, key_chain_img, can_warp=False, can_transform=False, can_flip=False, border_replicate=True)
chain_img = imagelib.warp_by_params (warp_params, chain_img, can_warp=False, can_transform=False, can_flip=False, border_replicate=True)
img_warped = np.clip(img_warped.astype(np.float32), 0, 1)
img_transformed = np.clip(img_transformed.astype(np.float32), 0, 1)
mask[mask < 0.5] = 0.0
mask[mask >= 0.5] = 1.0
mask = np.clip(mask, 0, 1)
if data_format == "NCHW":
img_warped = np.transpose(img_warped, (2,0,1) )
img_transformed = np.transpose(img_transformed, (2,0,1) )
mask = np.transpose(mask, (2,0,1) )
key_img = np.transpose(key_img, (2,0,1) )
key_chain_img = np.transpose(key_chain_img, (2,0,1) )
chain_img = np.transpose(chain_img, (2,0,1) )
batches[0].append ( img_warped )
batches[1].append ( img_transformed )
batches[2].append ( mask )
batches[3].append ( key_img )
batches[4].append ( key_chain_img )
batches[5].append ( chain_img )
n_batch += 1
except:
io.log_err ( traceback.format_exc() )
yield [ np.array(batch) for batch in batches]
|