File size: 46,483 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import multiprocessing
import operator
from functools import partial

import numpy as np

from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType
from models import ModelBase
from samplelib import *
from core.cv2ex import *

class AMPModel(ModelBase):

    #override
    def on_initialize_options(self):
        default_resolution         = self.options['resolution']         = self.load_or_def_option('resolution', 224)
        default_face_type          = self.options['face_type']          = self.load_or_def_option('face_type', 'wf')
        default_models_opt_on_gpu  = self.options['models_opt_on_gpu']  = self.load_or_def_option('models_opt_on_gpu', True)

        default_ae_dims            = self.options['ae_dims']            = self.load_or_def_option('ae_dims', 256)
        default_inter_dims         = self.options['inter_dims']         = self.load_or_def_option('inter_dims', 1024)

        default_e_dims             = self.options['e_dims']             = self.load_or_def_option('e_dims', 64)
        default_d_dims             = self.options['d_dims']             = self.options.get('d_dims', None)
        default_d_mask_dims        = self.options['d_mask_dims']        = self.options.get('d_mask_dims', None)
        default_morph_factor       = self.options['morph_factor']       = self.options.get('morph_factor', 0.5)
        default_uniform_yaw        = self.options['uniform_yaw']        = self.load_or_def_option('uniform_yaw', False)
        default_blur_out_mask      = self.options['blur_out_mask']      = self.load_or_def_option('blur_out_mask', False)
        default_lr_dropout         = self.options['lr_dropout']         = self.load_or_def_option('lr_dropout', 'n')
        default_random_warp        = self.options['random_warp']        = self.load_or_def_option('random_warp', True)
        default_ct_mode            = self.options['ct_mode']            = self.load_or_def_option('ct_mode', 'none')
        default_clipgrad           = self.options['clipgrad']           = self.load_or_def_option('clipgrad', False)

        ask_override = self.ask_override()
        if self.is_first_run() or ask_override:
            self.ask_autobackup_hour()
            self.ask_write_preview_history()
            self.ask_target_iter()
            self.ask_random_src_flip()
            self.ask_random_dst_flip()
            self.ask_batch_size(8)

        if self.is_first_run():
            resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
            resolution = np.clip ( (resolution // 32) * 32, 64, 640)
            self.options['resolution'] = resolution
            self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()


        default_d_dims             = self.options['d_dims']             = self.load_or_def_option('d_dims', 64)

        default_d_mask_dims        = default_d_dims // 3
        default_d_mask_dims        += default_d_mask_dims % 2
        default_d_mask_dims        = self.options['d_mask_dims']        = self.load_or_def_option('d_mask_dims', default_d_mask_dims)

        if self.is_first_run():
            self.options['ae_dims']    = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
            self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )

            e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
            self.options['e_dims'] = e_dims + e_dims % 2

            d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
            self.options['d_dims'] = d_dims + d_dims % 2

            d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
            self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2

            morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
            self.options['morph_factor'] = morph_factor

        if self.is_first_run() or ask_override:
            self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
            self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
            self.options['lr_dropout']  = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")

        default_gan_power          = self.options['gan_power']          = self.load_or_def_option('gan_power', 0.0)
        default_gan_patch_size     = self.options['gan_patch_size']     = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
        default_gan_dims           = self.options['gan_dims']           = self.load_or_def_option('gan_dims', 16)

        if self.is_first_run() or ask_override:
            self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")

            self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")

            self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )

            if self.options['gan_power'] != 0.0:
                gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
                self.options['gan_patch_size'] = gan_patch_size

                gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
                self.options['gan_dims'] = gan_dims

            self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. If src faceset is deverse enough, then lct mode is fine in most cases.")
            self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")

        self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])

    #override
    def on_initialize(self):
        device_config = nn.getCurrentDeviceConfig()
        devices = device_config.devices
        self.model_data_format = "NCHW"
        nn.initialize(data_format=self.model_data_format)
        tf = nn.tf

        input_ch=3
        resolution  = self.resolution = self.options['resolution']
        e_dims      = self.options['e_dims']
        ae_dims     = self.options['ae_dims']
        inter_dims  = self.inter_dims = self.options['inter_dims']
        inter_res   = self.inter_res = resolution // 32
        d_dims      = self.options['d_dims']
        d_mask_dims = self.options['d_mask_dims']
        face_type   = self.face_type = {'f'    : FaceType.FULL,
                                        'wf'   : FaceType.WHOLE_FACE,
                                        'head' : FaceType.HEAD}[ self.options['face_type'] ]
        morph_factor = self.options['morph_factor']
        gan_power    = self.gan_power = self.options['gan_power']
        random_warp  = self.options['random_warp']

        blur_out_mask = self.options['blur_out_mask']

        ct_mode = self.options['ct_mode']
        if ct_mode == 'none':
            ct_mode = None

        use_fp16 = False
        if self.is_exporting:
            use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')

        conv_dtype = tf.float16 if use_fp16 else tf.float32

        class Downscale(nn.ModelBase):
            def on_build(self, in_ch, out_ch, kernel_size=5 ):
                self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)

            def forward(self, x):
                return tf.nn.leaky_relu(self.conv1(x), 0.1)

        class Upscale(nn.ModelBase):
            def on_build(self, in_ch, out_ch, kernel_size=3 ):
                self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)

            def forward(self, x):
                x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
                return x

        class ResidualBlock(nn.ModelBase):
            def on_build(self, ch, kernel_size=3 ):
                self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
                self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)

            def forward(self, inp):
                x = self.conv1(inp)
                x = tf.nn.leaky_relu(x, 0.2)
                x = self.conv2(x)
                x = tf.nn.leaky_relu(inp+x, 0.2)
                return x

        class Encoder(nn.ModelBase):
            def on_build(self):
                self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
                self.res1 = ResidualBlock(e_dims)
                self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
                self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
                self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
                self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
                self.res5 = ResidualBlock(e_dims*8)
                self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )

            def forward(self, x):
                if use_fp16:
                    x = tf.cast(x, tf.float16)
                x = self.down1(x)
                x = self.res1(x)
                x = self.down2(x)
                x = self.down3(x)
                x = self.down4(x)
                x = self.down5(x)
                x = self.res5(x)
                if use_fp16:
                    x = tf.cast(x, tf.float32)
                x = nn.pixel_norm(nn.flatten(x), axes=-1)
                x = self.dense1(x)
                return x


        class Inter(nn.ModelBase):
            def on_build(self):
                self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)

            def forward(self, inp):
                x = inp
                x = self.dense2(x)
                x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
                return x


        class Decoder(nn.ModelBase):
            def on_build(self ):
                self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
                self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
                self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
                self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)

                self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
                self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
                self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
                self.res3 = ResidualBlock(d_dims*2, kernel_size=3)

                self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
                self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
                self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
                self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
                self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
                self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)

                self.out_conv  = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
                self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
                self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
                self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)

            def forward(self, z):
                if use_fp16:
                    z = tf.cast(z, tf.float16)

                x = self.upscale0(z)
                x = self.res0(x)
                x = self.upscale1(x)
                x = self.res1(x)
                x = self.upscale2(x)
                x = self.res2(x)
                x = self.upscale3(x)
                x = self.res3(x)

                x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
                                                                 self.out_conv1(x),
                                                                 self.out_conv2(x),
                                                                 self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
                m = self.upscalem0(z)
                m = self.upscalem1(m)
                m = self.upscalem2(m)
                m = self.upscalem3(m)
                m = self.upscalem4(m)
                m = tf.nn.sigmoid(self.out_convm(m))

                if use_fp16:
                    x = tf.cast(x, tf.float32)
                    m = tf.cast(m, tf.float32)
                return x, m

        models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
        models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
        optimizer_vars_on_cpu = models_opt_device=='/CPU:0'

        bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
        mask_shape = nn.get4Dshape(resolution,resolution,1)
        self.model_filename_list = []

        with tf.device ('/CPU:0'):
            #Place holders on CPU
            self.warped_src = tf.placeholder (nn.floatx, bgr_shape, name='warped_src')
            self.warped_dst = tf.placeholder (nn.floatx, bgr_shape, name='warped_dst')

            self.target_src = tf.placeholder (nn.floatx, bgr_shape, name='target_src')
            self.target_dst = tf.placeholder (nn.floatx, bgr_shape, name='target_dst')

            self.target_srcm    = tf.placeholder (nn.floatx, mask_shape, name='target_srcm')
            self.target_srcm_em = tf.placeholder (nn.floatx, mask_shape, name='target_srcm_em')
            self.target_dstm    = tf.placeholder (nn.floatx, mask_shape, name='target_dstm')
            self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')

            self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')

        # Initializing model classes
        with tf.device (models_opt_device):
            self.encoder = Encoder(name='encoder')
            self.inter_src = Inter(name='inter_src')
            self.inter_dst = Inter(name='inter_dst')
            self.decoder = Decoder(name='decoder')

            self.model_filename_list += [   [self.encoder,  'encoder.npy'],
                                            [self.inter_src, 'inter_src.npy'],
                                            [self.inter_dst , 'inter_dst.npy'],
                                            [self.decoder , 'decoder.npy'] ]

            if self.is_training:
                # Initialize optimizers
                clipnorm = 1.0 if self.options['clipgrad'] else 0.0
                lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0

                self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()

                #if random_warp:
                #    self.G_weights += self.inter_src.get_weights() + self.inter_dst.get_weights()

                self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
                self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
                self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]

                if gan_power != 0:
                    self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
                    self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
                    self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
                    self.model_filename_list += [ [self.GAN, 'GAN.npy'],
                                                  [self.GAN_opt, 'GAN_opt.npy'] ]

        if self.is_training:
            # Adjust batch size for multiple GPU
            gpu_count = max(1, len(devices) )
            bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
            self.set_batch_size( gpu_count*bs_per_gpu)

            # Compute losses per GPU
            gpu_pred_src_src_list = []
            gpu_pred_dst_dst_list = []
            gpu_pred_src_dst_list = []
            gpu_pred_src_srcm_list = []
            gpu_pred_dst_dstm_list = []
            gpu_pred_src_dstm_list = []

            gpu_src_losses = []
            gpu_dst_losses = []
            gpu_G_loss_gradients = []
            gpu_GAN_loss_gradients = []

            def DLossOnes(logits):
                return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])

            def DLossZeros(logits):
                return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])

            for gpu_id in range(gpu_count):
                with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
                    with tf.device(f'/CPU:0'):
                        # slice on CPU, otherwise all batch data will be transfered to GPU first
                        batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
                        gpu_warped_src      = self.warped_src [batch_slice,:,:,:]
                        gpu_warped_dst      = self.warped_dst [batch_slice,:,:,:]
                        gpu_target_src      = self.target_src [batch_slice,:,:,:]
                        gpu_target_dst      = self.target_dst [batch_slice,:,:,:]
                        gpu_target_srcm     = self.target_srcm[batch_slice,:,:,:]
                        gpu_target_srcm_em  = self.target_srcm_em[batch_slice,:,:,:]
                        gpu_target_dstm     = self.target_dstm[batch_slice,:,:,:]
                        gpu_target_dstm_em  = self.target_dstm_em[batch_slice,:,:,:]

                    # process model tensors
                    gpu_src_code = self.encoder (gpu_warped_src)
                    gpu_dst_code = self.encoder (gpu_warped_dst)

                    gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
                    gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)

                    inter_dims_bin = int(inter_dims*morph_factor)
                    with tf.device(f'/CPU:0'):
                        inter_rnd_binomial = tf.stack([tf.random.shuffle(tf.concat([tf.tile(tf.constant([1], tf.float32), ( inter_dims_bin, )),
                                                                                    tf.tile(tf.constant([0], tf.float32), ( inter_dims-inter_dims_bin, ))], 0 )) for _ in range(bs_per_gpu)], 0)

                        inter_rnd_binomial = tf.stop_gradient(inter_rnd_binomial[...,None,None])

                    gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
                    gpu_dst_code = gpu_dst_inter_dst_code

                    inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
                    gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0],   [-1, inter_dims_slice , inter_res, inter_res]),
                                                   tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )

                    gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
                    gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
                    gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)

                    gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
                    gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
                    gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)

                    gpu_target_srcm_anti = 1-gpu_target_srcm
                    gpu_target_dstm_anti = 1-gpu_target_dstm

                    gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
                    gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)

                    gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
                    gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
                    gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
                    gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur

                    if blur_out_mask:
                        sigma = resolution / 128
                        
                        x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
                        y = 1-nn.gaussian_blur(gpu_target_srcm, sigma) 
                        y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)                        
                        gpu_target_src = gpu_target_src*gpu_target_srcm + (x/y)*gpu_target_srcm_anti
                        
                        x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
                        y = 1-nn.gaussian_blur(gpu_target_dstm, sigma) 
                        y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)                        
                        gpu_target_dst = gpu_target_dst*gpu_target_dstm + (x/y)*gpu_target_dstm_anti

                    gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
                    gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
                    gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
                    gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur

                    gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
                    gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
                    gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
                    gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur

                    # Structural loss
                    gpu_src_loss =  tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
                    gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
                    gpu_dst_loss =  tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
                    gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])

                    # Pixel loss
                    gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
                    gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])

                    # Eyes+mouth prio loss
                    gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
                    gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])

                    # Mask loss
                    gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
                    gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )

                    gpu_src_losses += [gpu_src_loss]
                    gpu_dst_losses += [gpu_dst_loss]
                    gpu_G_loss = gpu_src_loss + gpu_dst_loss
                    # dst-dst background weak loss
                    gpu_G_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
                    gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)


                    if gan_power != 0:
                        gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
                        gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
                        gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
                        gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)

                        gpu_GAN_loss = (DLossOnes (gpu_target_src_d)   + DLossOnes (gpu_target_src_d2) + \
                                        DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
                                        DLossOnes (gpu_target_dst_d)   + DLossOnes (gpu_target_dst_d2) + \
                                        DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
                                        ) * (1.0 / 8)

                        gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]

                        gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
                                       DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
                                      ) * gan_power

                        # Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
                        gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
                        gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )

                    gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]

            # Average losses and gradients, and create optimizer update ops
            with tf.device(f'/CPU:0'):
                pred_src_src  = nn.concat(gpu_pred_src_src_list, 0)
                pred_dst_dst  = nn.concat(gpu_pred_dst_dst_list, 0)
                pred_src_dst  = nn.concat(gpu_pred_src_dst_list, 0)
                pred_src_srcm = nn.concat(gpu_pred_src_srcm_list, 0)
                pred_dst_dstm = nn.concat(gpu_pred_dst_dstm_list, 0)
                pred_src_dstm = nn.concat(gpu_pred_src_dstm_list, 0)

            with tf.device (models_opt_device):
                src_loss = tf.concat(gpu_src_losses, 0)
                dst_loss = tf.concat(gpu_dst_losses, 0)
                train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))

                if gan_power != 0:
                    GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gradients) )

            # Initializing training and view functions
            def train(warped_src, target_src, target_srcm, target_srcm_em,  \
                              warped_dst, target_dst, target_dstm, target_dstm_em, ):
                s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
                                            feed_dict={self.warped_src :warped_src,
                                                       self.target_src :target_src,
                                                       self.target_srcm:target_srcm,
                                                       self.target_srcm_em:target_srcm_em,
                                                       self.warped_dst :warped_dst,
                                                       self.target_dst :target_dst,
                                                       self.target_dstm:target_dstm,
                                                       self.target_dstm_em:target_dstm_em,
                                                       })
                return s, d
            self.train = train

            if gan_power != 0:
                def GAN_train(warped_src, target_src, target_srcm, target_srcm_em,  \
                              warped_dst, target_dst, target_dstm, target_dstm_em, ):
                    nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
                                                               self.target_src :target_src,
                                                               self.target_srcm:target_srcm,
                                                               self.target_srcm_em:target_srcm_em,
                                                               self.warped_dst :warped_dst,
                                                               self.target_dst :target_dst,
                                                               self.target_dstm:target_dstm,
                                                               self.target_dstm_em:target_dstm_em})
                self.GAN_train = GAN_train

            def AE_view(warped_src, warped_dst, morph_value):
                return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
                                            feed_dict={self.warped_src:warped_src, self.warped_dst:warped_dst, self.morph_value_t:[morph_value] })

            self.AE_view = AE_view
        else:
            #Initializing merge function
            with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
                gpu_dst_code = self.encoder (self.warped_dst)
                gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
                gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)

                inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
                gpu_src_dst_code =  tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0],   [-1, inter_dims_slice , inter_res, inter_res]),
                                                 tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )

                gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
                _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)

            def AE_merge(warped_dst, morph_value):
                return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst, self.morph_value_t:[morph_value] })

            self.AE_merge = AE_merge

        # Loading/initializing all models/optimizers weights
        for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
            do_init = self.is_first_run()
            if self.is_training and gan_power != 0 and model == self.GAN:
                if self.gan_model_changed:
                    do_init = True
            if not do_init:
                do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
            if do_init:
                model.init_weights()
        ###############

        # initializing sample generators
        if self.is_training:
            training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
            training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()

            random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain

            cpu_count = multiprocessing.cpu_count()
            src_generators_count = cpu_count // 2
            dst_generators_count = cpu_count // 2
            if ct_mode is not None:
                src_generators_count = int(src_generators_count * 1.5)



            self.set_training_data_generators ([
                    SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
                        sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
                        output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode,                                         'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode,                                         'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,   'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE,  'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,   'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                              ],
                        uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
                        generators_count=src_generators_count ),

                    SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
                        sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
                        output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR,                                                             'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR,                                                             'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,   'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE,  'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                                {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False      , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G,   'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
                                              ],
                        uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
                        generators_count=dst_generators_count )
                             ])

    def export_dfm (self):
        output_path=self.get_strpath_storage_for_file('model.dfm')

        io.log_info(f'Dumping .dfm to {output_path}')

        tf = nn.tf
        with tf.device (nn.tf_default_device_name):
            warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
            warped_dst = tf.transpose(warped_dst, (0,3,1,2))
            morph_value = tf.placeholder (nn.floatx, (1,), name='morph_value')

            gpu_dst_code = self.encoder (warped_dst)
            gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
            gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)

            inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
            gpu_src_dst_code =  tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0],   [-1, inter_dims_slice , self.inter_res, self.inter_res]),
                                            tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )

            gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
            _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)

            gpu_pred_src_dst = tf.transpose(gpu_pred_src_dst, (0,2,3,1))
            gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
            gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))

        tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
        tf.identity(gpu_pred_src_dst, name='out_celeb_face')
        tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')

        output_graph_def = tf.graph_util.convert_variables_to_constants(
            nn.tf_sess,
            tf.get_default_graph().as_graph_def(),
            ['out_face_mask','out_celeb_face','out_celeb_face_mask']
        )

        import tf2onnx
        with tf.device("/CPU:0"):
            model_proto, _ = tf2onnx.convert._convert_common(
                output_graph_def,
                name='AMP',
                input_names=['in_face:0','morph_value:0'],
                output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
                opset=9,
                output_path=output_path)

    #override
    def get_model_filename_list(self):
        return self.model_filename_list

    #override
    def onSave(self):
        for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
            model.save_weights ( self.get_strpath_storage_for_file(filename) )

    #override
    def should_save_preview_history(self):
        return (not io.is_colab() and self.iter % ( 10*(max(1,self.resolution // 64)) ) == 0) or \
               (io.is_colab() and self.iter % 100 == 0)

    #override
    def onTrainOneIter(self):
        bs = self.get_batch_size()

        ( (warped_src, target_src, target_srcm, target_srcm_em), \
          (warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()

        src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)

        if self.gan_power != 0:
            self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)

        return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )

    #override
    def onGetPreview(self, samples, for_history=False):
        ( (warped_src, target_src, target_srcm, target_srcm_em),
          (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples

        S, D, SS, DD, DDM_000, _, _ = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst, 0.0)  ) ]

        _, _, DDM_025, SD_025, SDM_025 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.25) ]
        _, _, DDM_050, SD_050, SDM_050 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.50) ]
        _, _, DDM_065, SD_065, SDM_065 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.65) ]
        _, _, DDM_075, SD_075, SDM_075 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.75) ]
        _, _, DDM_100, SD_100, SDM_100 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 1.00) ]

        (DDM_000,
         DDM_025, SDM_025,
         DDM_050, SDM_050,
         DDM_065, SDM_065,
         DDM_075, SDM_075,
         DDM_100, SDM_100) = [ np.repeat (x, (3,), -1) for x in (DDM_000,
                                                                 DDM_025, SDM_025,
                                                                 DDM_050, SDM_050,
                                                                 DDM_065, SDM_065,
                                                                 DDM_075, SDM_075,
                                                                 DDM_100, SDM_100) ]

        target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]

        n_samples = min(4, self.get_batch_size(), 800 // self.resolution )

        result = []

        i = np.random.randint(n_samples) if not for_history else 0

        st =  [ np.concatenate ((S[i],  D[i],  DD[i]*DDM_000[i]), axis=1) ]
        st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]

        result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]

        st =  [ np.concatenate ((DD[i], SD_025[i],  SD_050[i]), axis=1) ]
        st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
        result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]

        st =  [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i],  SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
        st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
        result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]

        return result

    def predictor_func (self, face, morph_value):
        face = nn.to_data_format(face[None,...], self.model_data_format, "NHWC")

        bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face, morph_value) ]

        return bgr[0], mask_src_dstm[0][...,0], mask_dst_dstm[0][...,0]

    #override
    def get_MergerConfig(self):
        morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )

        def predictor_morph(face):
            return self.predictor_func(face, morph_factor)


        import merger
        return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')

Model = AMPModel