File size: 46,483 Bytes
fcd5579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import multiprocessing
import operator
from functools import partial
import numpy as np
from core import mathlib
from core.interact import interact as io
from core.leras import nn
from facelib import FaceType
from models import ModelBase
from samplelib import *
from core.cv2ex import *
class AMPModel(ModelBase):
#override
def on_initialize_options(self):
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_inter_dims = self.options['inter_dims'] = self.load_or_def_option('inter_dims', 1024)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
ask_override = self.ask_override()
if self.is_first_run() or ask_override:
self.ask_autobackup_hour()
self.ask_write_preview_history()
self.ask_target_iter()
self.ask_random_src_flip()
self.ask_random_dst_flip()
self.ask_batch_size(8)
if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
resolution = np.clip ( (resolution // 32) * 32, 64, 640)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
default_d_mask_dims = default_d_dims // 3
default_d_mask_dims += default_d_mask_dims % 2
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
if self.is_first_run():
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
self.options['e_dims'] = e_dims + e_dims % 2
d_dims = np.clip ( io.input_int("Decoder dimensions", default_d_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
self.options['d_dims'] = d_dims + d_dims % 2
d_mask_dims = np.clip ( io.input_int("Decoder mask dimensions", default_d_mask_dims, add_info="16-256", help_message="Typical mask dimensions = decoder dimensions / 3. If you manually cut out obstacles from the dst mask, you can increase this parameter to achieve better quality." ), 16, 256 )
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="Typical fine value is 0.5"), 0.1, 0.5 )
self.options['morph_factor'] = morph_factor
if self.is_first_run() or ask_override:
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16)
if self.is_first_run() or ask_override:
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
self.options['gan_power'] = np.clip ( io.input_number ("GAN power", default_gan_power, add_info="0.0 .. 5.0", help_message="Forces the neural network to learn small details of the face. Enable it only when the face is trained enough with random_warp(off), and don't disable. The higher the value, the higher the chances of artifacts. Typical fine value is 0.1"), 0.0, 5.0 )
if self.options['gan_power'] != 0.0:
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
self.options['gan_patch_size'] = gan_patch_size
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
self.options['gan_dims'] = gan_dims
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. If src faceset is deverse enough, then lct mode is fine in most cases.")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
#override
def on_initialize(self):
device_config = nn.getCurrentDeviceConfig()
devices = device_config.devices
self.model_data_format = "NCHW"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
input_ch=3
resolution = self.resolution = self.options['resolution']
e_dims = self.options['e_dims']
ae_dims = self.options['ae_dims']
inter_dims = self.inter_dims = self.options['inter_dims']
inter_res = self.inter_res = resolution // 32
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
face_type = self.face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
morph_factor = self.options['morph_factor']
gan_power = self.gan_power = self.options['gan_power']
random_warp = self.options['random_warp']
blur_out_mask = self.options['blur_out_mask']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
use_fp16 = False
if self.is_exporting:
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
conv_dtype = tf.float16 if use_fp16 else tf.float32
class Downscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=5 ):
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x):
return tf.nn.leaky_relu(self.conv1(x), 0.1)
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x):
x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = tf.nn.leaky_relu(inp+x, 0.2)
return x
class Encoder(nn.ModelBase):
def on_build(self):
self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
self.res1 = ResidualBlock(e_dims)
self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
self.res5 = ResidualBlock(e_dims*8)
self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )
def forward(self, x):
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.down1(x)
x = self.res1(x)
x = self.down2(x)
x = self.down3(x)
x = self.down4(x)
x = self.down5(x)
x = self.res5(x)
if use_fp16:
x = tf.cast(x, tf.float32)
x = nn.pixel_norm(nn.flatten(x), axes=-1)
x = self.dense1(x)
return x
class Inter(nn.ModelBase):
def on_build(self):
self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)
def forward(self, inp):
x = inp
x = self.dense2(x)
x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
return x
class Decoder(nn.ModelBase):
def on_build(self ):
self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)
self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
self.res3 = ResidualBlock(d_dims*2, kernel_size=3)
self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
def forward(self, z):
if use_fp16:
z = tf.cast(z, tf.float16)
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
x = self.res1(x)
x = self.upscale2(x)
x = self.res2(x)
x = self.upscale3(x)
x = self.res3(x)
x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
self.out_conv1(x),
self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
m = self.upscalem3(m)
m = self.upscalem4(m)
m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
mask_shape = nn.get4Dshape(resolution,resolution,1)
self.model_filename_list = []
with tf.device ('/CPU:0'):
#Place holders on CPU
self.warped_src = tf.placeholder (nn.floatx, bgr_shape, name='warped_src')
self.warped_dst = tf.placeholder (nn.floatx, bgr_shape, name='warped_dst')
self.target_src = tf.placeholder (nn.floatx, bgr_shape, name='target_src')
self.target_dst = tf.placeholder (nn.floatx, bgr_shape, name='target_dst')
self.target_srcm = tf.placeholder (nn.floatx, mask_shape, name='target_srcm')
self.target_srcm_em = tf.placeholder (nn.floatx, mask_shape, name='target_srcm_em')
self.target_dstm = tf.placeholder (nn.floatx, mask_shape, name='target_dstm')
self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')
self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')
# Initializing model classes
with tf.device (models_opt_device):
self.encoder = Encoder(name='encoder')
self.inter_src = Inter(name='inter_src')
self.inter_dst = Inter(name='inter_dst')
self.decoder = Decoder(name='decoder')
self.model_filename_list += [ [self.encoder, 'encoder.npy'],
[self.inter_src, 'inter_src.npy'],
[self.inter_dst , 'inter_dst.npy'],
[self.decoder , 'decoder.npy'] ]
if self.is_training:
# Initialize optimizers
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0
self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()
#if random_warp:
# self.G_weights += self.inter_src.get_weights() + self.inter_dst.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
if gan_power != 0:
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
[self.GAN_opt, 'GAN_opt.npy'] ]
if self.is_training:
# Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU
gpu_pred_src_src_list = []
gpu_pred_dst_dst_list = []
gpu_pred_src_dst_list = []
gpu_pred_src_srcm_list = []
gpu_pred_dst_dstm_list = []
gpu_pred_src_dstm_list = []
gpu_src_losses = []
gpu_dst_losses = []
gpu_G_loss_gradients = []
gpu_GAN_loss_gradients = []
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
def DLossZeros(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
gpu_target_src = self.target_src [batch_slice,:,:,:]
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
gpu_target_srcm_em = self.target_srcm_em[batch_slice,:,:,:]
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
gpu_target_dstm_em = self.target_dstm_em[batch_slice,:,:,:]
# process model tensors
gpu_src_code = self.encoder (gpu_warped_src)
gpu_dst_code = self.encoder (gpu_warped_dst)
gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
inter_dims_bin = int(inter_dims*morph_factor)
with tf.device(f'/CPU:0'):
inter_rnd_binomial = tf.stack([tf.random.shuffle(tf.concat([tf.tile(tf.constant([1], tf.float32), ( inter_dims_bin, )),
tf.tile(tf.constant([0], tf.float32), ( inter_dims-inter_dims_bin, ))], 0 )) for _ in range(bs_per_gpu)], 0)
inter_rnd_binomial = tf.stop_gradient(inter_rnd_binomial[...,None,None])
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_anti = 1-gpu_target_srcm
gpu_target_dstm_anti = 1-gpu_target_dstm
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
if blur_out_mask:
sigma = resolution / 128
x = nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_srcm, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_src = gpu_target_src*gpu_target_srcm + (x/y)*gpu_target_srcm_anti
x = nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, sigma)
y = 1-nn.gaussian_blur(gpu_target_dstm, sigma)
y = tf.where(tf.equal(y, 0), tf.ones_like(y), y)
gpu_target_dst = gpu_target_dst*gpu_target_dstm + (x/y)*gpu_target_dstm_anti
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
# Structural loss
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
# Pixel loss
gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
# Eyes+mouth prio loss
gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
# Mask loss
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_src_losses += [gpu_src_loss]
gpu_dst_losses += [gpu_dst_loss]
gpu_G_loss = gpu_src_loss + gpu_dst_loss
# dst-dst background weak loss
gpu_G_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
if gan_power != 0:
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * (1.0 / 8)
gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
) * gan_power
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device(f'/CPU:0'):
pred_src_src = nn.concat(gpu_pred_src_src_list, 0)
pred_dst_dst = nn.concat(gpu_pred_dst_dst_list, 0)
pred_src_dst = nn.concat(gpu_pred_src_dst_list, 0)
pred_src_srcm = nn.concat(gpu_pred_src_srcm_list, 0)
pred_dst_dstm = nn.concat(gpu_pred_dst_dstm_list, 0)
pred_src_dstm = nn.concat(gpu_pred_src_dstm_list, 0)
with tf.device (models_opt_device):
src_loss = tf.concat(gpu_src_losses, 0)
dst_loss = tf.concat(gpu_dst_losses, 0)
train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
if gan_power != 0:
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gradients) )
# Initializing training and view functions
def train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em,
})
return s, d
self.train = train
if gan_power != 0:
def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ):
nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em})
self.GAN_train = GAN_train
def AE_view(warped_src, warped_dst, morph_value):
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
feed_dict={self.warped_src:warped_src, self.warped_dst:warped_dst, self.morph_value_t:[morph_value] })
self.AE_view = AE_view
else:
#Initializing merge function
with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
gpu_dst_code = self.encoder (self.warped_dst)
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
def AE_merge(warped_dst, morph_value):
return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst, self.morph_value_t:[morph_value] })
self.AE_merge = AE_merge
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
do_init = self.is_first_run()
if self.is_training and gan_power != 0 and model == self.GAN:
if self.gan_model_changed:
do_init = True
if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init:
model.init_weights()
###############
# initializing sample generators
if self.is_training:
training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if ct_mode is not None:
src_generators_count = int(src_generators_count * 1.5)
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_src_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=dst_generators_count )
])
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
tf = nn.tf
with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
warped_dst = tf.transpose(warped_dst, (0,3,1,2))
morph_value = tf.placeholder (nn.floatx, (1,), name='morph_value')
gpu_dst_code = self.encoder (warped_dst)
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
gpu_pred_src_dst = tf.transpose(gpu_pred_src_dst, (0,2,3,1))
gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))
tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
tf.identity(gpu_pred_src_dst, name='out_celeb_face')
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='AMP',
input_names=['in_face:0','morph_value:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=9,
output_path=output_path)
#override
def get_model_filename_list(self):
return self.model_filename_list
#override
def onSave(self):
for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
model.save_weights ( self.get_strpath_storage_for_file(filename) )
#override
def should_save_preview_history(self):
return (not io.is_colab() and self.iter % ( 10*(max(1,self.resolution // 64)) ) == 0) or \
(io.is_colab() and self.iter % 100 == 0)
#override
def onTrainOneIter(self):
bs = self.get_batch_size()
( (warped_src, target_src, target_srcm, target_srcm_em), \
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
if self.gan_power != 0:
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
S, D, SS, DD, DDM_000, _, _ = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst, 0.0) ) ]
_, _, DDM_025, SD_025, SDM_025 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.25) ]
_, _, DDM_050, SD_050, SDM_050 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.50) ]
_, _, DDM_065, SD_065, SDM_065 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.65) ]
_, _, DDM_075, SD_075, SDM_075 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 0.75) ]
_, _, DDM_100, SD_100, SDM_100 = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in self.AE_view (target_src, target_dst, 1.00) ]
(DDM_000,
DDM_025, SDM_025,
DDM_050, SDM_050,
DDM_065, SDM_065,
DDM_075, SDM_075,
DDM_100, SDM_100) = [ np.repeat (x, (3,), -1) for x in (DDM_000,
DDM_025, SDM_025,
DDM_050, SDM_050,
DDM_065, SDM_065,
DDM_075, SDM_075,
DDM_100, SDM_100) ]
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
result = []
i = np.random.randint(n_samples) if not for_history else 0
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]
return result
def predictor_func (self, face, morph_value):
face = nn.to_data_format(face[None,...], self.model_data_format, "NHWC")
bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face, morph_value) ]
return bgr[0], mask_src_dstm[0][...,0], mask_dst_dstm[0][...,0]
#override
def get_MergerConfig(self):
morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
def predictor_morph(face):
return self.predictor_func(face, morph_factor)
import merger
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
Model = AMPModel
|