--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: whisper-tiny-zero-shot results: - task: name: Audio Classification type: audio-classification dataset: name: Speech Commands type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.0 --- # whisper-tiny-zero-shot This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: 2.3696 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8182 | 1.0 | 6 | 1.7915 | 0.3333 | | 1.7461 | 2.0 | 12 | 1.8821 | 0.0 | | 1.6025 | 3.0 | 18 | 1.8774 | 0.0 | | 1.4742 | 4.0 | 24 | 1.9225 | 0.0 | | 1.1823 | 5.0 | 30 | 2.0195 | 0.0 | | 0.9187 | 6.0 | 36 | 2.1978 | 0.0 | | 0.9999 | 7.0 | 42 | 2.2030 | 0.0 | | 0.6854 | 8.0 | 48 | 2.2368 | 0.0 | | 0.8815 | 9.0 | 54 | 2.3313 | 0.0 | | 0.5719 | 10.0 | 60 | 2.3696 | 0.0 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0