Video-CCAM-7B-v1.2 / modeling_videoccam.py
jaronfei
first commit
47990f6
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
================================================
@author: Jaron
@time: 2024/08/21 17:41:52
@email: fjjth98@163.com
@description: Video-CCAM
================================================
"""
from typing import Optional, Union
import torch
from PIL import Image
from torch import nn
from torch.nn import functional as F
from transformers import (AutoImageProcessor, AutoModel, AutoModelForCausalLM,
AutoTokenizer, Cache, DynamicCache, GenerationConfig,
PreTrainedModel)
from transformers.activations import ACT2FN
from .configuration_videoccam import CCAMConfig, VideoCCAMConfig
class CCAMMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_act = config.hidden_act
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.output_size = config.output_size
if self.hidden_act == 'swiglu':
self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.mlp_bias)
self.act_fn = ACT2FN['silu']
else:
self.fc1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[self.hidden_act]
self.fc2 = nn.Linear(self.intermediate_size, self.output_size, bias=config.mlp_bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
if self.hidden_act == 'swiglu':
gate, up = hidden_states.chunk(2, dim=-1)
hidden_states = self.act_fn(gate) * up
else:
hidden_states = self.act_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class CCAMCrossAttention(nn.Module):
"""Cross-attention layer of the CCAM projector.
Flash Attention 2 is not supported since the mask may be neither full nor causal. Only support `attn_implementation` as `eager` and `sdpa`.
"""
def __init__(self, config):
super().__init__()
self.num_heads = config.num_heads
self.hidden_size = config.hidden_size
self.attention_bias = config.attention_bias
self.attention_dropout = config.attention_dropout
self.cross_hidden_size = config.cross_hidden_size
self.num_key_value_heads = config.num_key_value_heads
self.attn_implementation = config._attn_implementation
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
assert self.head_dim * self.num_heads == self.hidden_size, f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`: {self.num_heads}).'
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.attention_bias)
self.k_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=self.attention_bias)
self.v_proj = nn.Linear(self.cross_hidden_size, self.num_key_value_heads * self.head_dim, bias=self.attention_bias)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.attention_bias)
def forward(
self,
hidden_states: torch.Tensor, # (B, Q, C)
cross_hidden_states: torch.Tensor, # (B, L, C')
attention_mask: torch.Tensor = None # (Q, L), '-inf' means masked, 0 means not masked
) -> torch.Tensor: # (B, Q, C)
B, Q, C = hidden_states.size()
query_states = self.q_proj(hidden_states) # (B, Q, C)
key_states = self.k_proj(cross_hidden_states)
value_states = self.v_proj(cross_hidden_states)
L = key_states.size(1)
query_states = query_states.view(B, Q, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(B, L, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(B, L, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if self.num_key_value_groups > 1:
key_states = key_states.repeat_interleave(repeats=self.num_key_value_groups, dim=1)
value_states = value_states.repeat_interleave(repeats=self.num_key_value_groups, dim=1)
if self.attn_implementation == 'eager':
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / self.head_dim ** 0.5 # (B, num_heads, Q, L)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask.view(1, 1, Q, L)
# upcast attention to fp32
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) # (B, num_heads, Q, head_dim)
else: # 'sdpa'
# there are bugs in torch <=2.1.0, requiring qkv as contiguous(), be careful
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0
)
attn_output = attn_output.transpose(1, 2).reshape(B, Q, C) # (B, Q, C)
attn_output = self.o_proj(attn_output)
return attn_output
class CCAMModel(PreTrainedModel):
config_class = CCAMConfig
_no_split_modules = ['CCAMCrossAttention']
_supports_flash_attn_2 = True # actually flash_attention_2 is not supported in the projector, manually convert it to sdpa
_supports_sdpa = True
def __init__(self, config: CCAMConfig):
super().__init__(config)
self.num_query = config.num_query
self.hidden_size = config.hidden_size
self.output_size = config.output_size
self.cross_hidden_size = config.cross_hidden_size
self.query = nn.Parameter(torch.empty(1, self.num_query, self.hidden_size).normal_(mean=.0, std=.02))
self.pre_ccam = nn.Sequential(
nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps),
nn.Dropout(config.dropout)
)
self.ccam = CCAMCrossAttention(config)
self.post_ccam = nn.Sequential(
nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps),
nn.Dropout(config.dropout),
CCAMMLP(config)
)
def get_ccam(self, vision_hidden_state: torch.Tensor) -> torch.Tensor: # (Q, T*L)
"""Compute CCAM Mask for vision hidden state
Args:
vision_hidden_state (torch.Tensor): (T, L, C)
Returns:
torch.Tensor: (Q, T*L) -inf means masked
"""
T, L, _ = vision_hidden_state.size()
dtype, device = vision_hidden_state.dtype, vision_hidden_state.device
base_mask = torch.zeros(T, T, dtype=dtype, device=device)
t = torch.arange(T, device=device)
base_mask.masked_fill_(t > t[:, None], float('-inf'))
attention_mask = torch.zeros(self.num_query, T * L, dtype=dtype, device=device)
attention_mask[:self.num_query // T * T] = torch.kron(base_mask, torch.ones(self.num_query // T, L, dtype=dtype, device=device))
return attention_mask
def forward(self, vision_hidden_states: list[torch.Tensor]) -> torch.Tensor: # (B, Q, C)
"""Forward function, do not collect batch due to the support of zero3
Args:
vision_hidden_states (list[torch.Tensor]): [(t0, L, C), (t1, L, C), ...]
Returns:
torch.Tensor: (B, Q, C)
"""
output = []
for hidden_states in vision_hidden_states:
# reshape inputs and construct ccam masks
attention_mask = self.get_ccam(hidden_states) # (Q, ti * L)
# forward
x = self.pre_ccam(self.query) # (1, Q, C)
x = self.ccam(
hidden_states=x, # (1, Q, C)
cross_hidden_states=hidden_states.flatten(0, 1)[None], # (1, ti * L, C')
attention_mask=attention_mask[None] # (1, Q, ti * L)
) + x
x = self.post_ccam(x)
output.append(x)
output = torch.cat(output, dim=0)
return output
# Modified from transformers.models.llava_next.modeling_llava_next.py
class VideoCCAM(PreTrainedModel):
config_class = VideoCCAMConfig
_auto_class = 'AutoModel'
_supports_flash_attn_2 = True
def __init__(self, config: VideoCCAMConfig):
super().__init__(config)
# the following only works for SiglipVisionModel
self.vision_encoder = AutoModel.from_config(config.vision_config, torch_dtype=config.torch_dtype, attn_implementation=config._attn_implementation)
self.vision_encoder.vision_model.post_layernorm = nn.Identity()
self.projector = CCAMModel._from_config(config.projector_config, torch_dtype=config.torch_dtype, attn_implementation=config._attn_implementation)
self.llm = AutoModelForCausalLM.from_config(config.text_config, torch_dtype=config.torch_dtype, attn_implementation=config._attn_implementation)
self.post_init()
# copied from transformers.models.llava_next.modeling_llava_next
def _init_weights(self, module, std=.02):
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.llm._supports_sdpa
@property
def _no_split_modules(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.vision_encoder._no_split_modules + self.projector._no_split_modules + self.llm._no_split_modules
@torch.inference_mode
def generate(
self,
input_ids: list[list[int]] = None, # [(l_0,), (l_1,), ...]
pixel_values: torch.FloatTensor = None, # (t_0+t_1+..., 3, H, W)
vision_split_sizes: list[int] = None, # [t_0, t_1, ...]
past_key_values: Union[tuple, Cache] = None,
batch_generation: bool = False,
generation_config: GenerationConfig = None,
**kwargs
) -> tuple[torch.LongTensor, Optional[Cache]]:
"""Generation for multi-modal inputs
Args:
input_ids (list[list[int]]): input token indices, use list[int] for efficient embeddings concatenation.
pixel_values (torch.FloatTensor): input image/video (processed) pixel values.
vision_split_sizes (list[int]): for each vision token (<image>, <video>), how many frames are required.
past_key_values (Union[tuple, Cache]): past_key_values for efficient generation, only used for multi-turn dialogue and single inputs. If this argument is not None, new past_key_values will also be returned.
batch_generation (bool, optional): whether left padding for batch inputs. Defaults to False.
generation_config (GenerationConfig, optional): _description_. Defaults to None.
Returns:
torch.LongTensor: _description_
"""
if past_key_values is not None and len(input_ids) != 1:
raise ValueError(f'`past_key_values` is only supported when there is only 1 `input_ids`.')
# compute text embeddings
device = self.llm.get_input_embeddings().weight.device
_input_ids, text_split_pos = [], [0]
for ids in input_ids:
_input_ids += ids
text_split_pos.append(text_split_pos[-1] + len(ids))
_input_ids = torch.tensor(_input_ids, dtype=torch.long, device=device)
vision_pos = torch.where((_input_ids == self.config.image_token_id) | (_input_ids == self.config.video_token_id))[0].tolist()
_inputs_embeds = self.llm.get_input_embeddings()(_input_ids)
# compute vision embeddings
if pixel_values is not None:
assert len(vision_pos) == len(vision_split_sizes), f'The number of visual tokens ({len(vision_pos)}) should be equal to the number of visual features ({len(vision_split_sizes)}).'
vision_embeds = self.vision_encoder(pixel_values, output_hidden_states=False).last_hidden_state
vision_embeds = self.projector(vision_embeds.split(vision_split_sizes, dim=0))
# insert vision embeddings among text embeddings
inputs_embeds_len, inputs_embeds, idx = [], [], 0
for i in range(1, len(text_split_pos)):
start, cur_inputs_embeds = text_split_pos[i-1], []
while idx < len(vision_pos) and vision_pos[idx] < text_split_pos[i]:
cur_inputs_embeds.append(_inputs_embeds[start:vision_pos[idx]])
cur_inputs_embeds.append(vision_embeds[idx])
start, idx = vision_pos[idx] + 1, idx + 1
if start < text_split_pos[i]:
cur_inputs_embeds.append(_inputs_embeds[start:text_split_pos[i]])
inputs_embeds_len.append(sum(i.size(0) for i in cur_inputs_embeds))
inputs_embeds.append(cur_inputs_embeds)
# batch processing is only supported only if no `past_key_values` is provided
if past_key_values is None:
# left padding for batch generation
if batch_generation:
B, L = len(input_ids), max(inputs_embeds_len)
padded_inputs_embeds, attention_mask = [], []
pad_embeds = self.llm.get_input_embeddings()(torch.tensor([self.config.text_config.pad_token_id], dtype=torch.long, device=device)) # (1, C')
for l, embeds in zip(inputs_embeds_len, inputs_embeds):
padded_inputs_embeds.append(pad_embeds.expand(L - l, -1))
padded_inputs_embeds += embeds
attention_mask += [0] * (L- l) + [1] * l
padded_inputs_embeds = torch.cat(padded_inputs_embeds, dim=0).view(B, L, -1)
attention_mask = torch.tensor(attention_mask, dtype=torch.long, device=device).view(B, L)
output_ids = self.llm.generate(
inputs_embeds=padded_inputs_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
**kwargs
)
else:
output_ids = []
for l, embeds in zip(inputs_embeds_len, inputs_embeds):
output_ids += self.llm.generate(
inputs_embeds=torch.cat(embeds, dim=0)[None],
attention_mask=torch.ones(1, l, dtype=torch.long, device=device),
generation_config=generation_config,
**kwargs
)
return output_ids
else:
inputs_embeds = torch.cat(inputs_embeds[0], dim=0)
if not isinstance(past_key_values, Cache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
# use inputs_embeds and input past_key_values to compute output past_key_values (manually prefill)
past_key_values = self.llm(
inputs_embeds=inputs_embeds[None, :-1],
past_key_values=past_key_values,
return_dict=True
).past_key_values
# here pseudo_input_ids means the prefix ids are just placeholders
pseudo_input_ids_len = past_key_values.get_seq_length() + 1
pseudo_input_ids = torch.zeros(1, pseudo_input_ids_len, dtype=torch.long, device=device)
pseudo_input_ids[0, -1] = _input_ids[-1]
output = self.llm.generate(
input_ids=pseudo_input_ids,
past_key_values=past_key_values,
generation_config=generation_config,
return_dict_in_generate=True,
**kwargs
)
return output.sequences[0, pseudo_input_ids_len:], output.past_key_values
def chat(
self,
messages: list[list[dict]],
images: list[list[Image.Image]] = None,
tokenizer: AutoTokenizer = None,
image_processor: AutoImageProcessor = None,
batch_generation: bool = False,
generation_config = None,
**kwargs
) -> list[str]:
# images
pixel_values, vision_split_sizes = [], []
for image in images:
pixel_values += image
vision_split_sizes.append(len(image))
if len(pixel_values) > 0:
pixel_values = image_processor(pixel_values, return_tensors='pt')['pixel_values'].to(
dtype=self.vision_encoder.get_input_embeddings().weight.dtype,
device=self.vision_encoder.get_input_embeddings().weight.device
)
else:
pixel_values = None
# texts
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=False
)
# generation
output_ids = self.generate(
input_ids=input_ids,
pixel_values=pixel_values,
vision_split_sizes=vision_split_sizes,
batch_generation=batch_generation,
generation_config=generation_config,
**kwargs
)
# decoding
prediction = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return prediction