File size: 15,882 Bytes
e782ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformerb5-largeImages
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformerb5-largeImages

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the JCAI2000/LargerImagesLabelled dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1156
- Mean Iou: 0.7785
- Mean Accuracy: 0.8298
- Overall Accuracy: 0.9767
- Accuracy Background: 0.9925
- Accuracy Branch: 0.6671
- Iou Background: 0.9759
- Iou Branch: 0.5812

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Branch | Iou Background | Iou Branch |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
| 0.2671        | 1.18  | 20   | 0.2779          | 0.4834   | 0.5075        | 0.9509           | 0.9985              | 0.0165          | 0.9508         | 0.0160     |
| 0.122         | 2.35  | 40   | 0.1772          | 0.6522   | 0.6931        | 0.9632           | 0.9922              | 0.3940          | 0.9625         | 0.3419     |
| 0.0671        | 3.53  | 60   | 0.1086          | 0.7392   | 0.8603        | 0.9658           | 0.9772              | 0.7435          | 0.9646         | 0.5138     |
| 0.0979        | 4.71  | 80   | 0.0860          | 0.7552   | 0.8493        | 0.9705           | 0.9836              | 0.7150          | 0.9695         | 0.5409     |
| 0.0749        | 5.88  | 100  | 0.0727          | 0.7601   | 0.8116        | 0.9746           | 0.9921              | 0.6311          | 0.9738         | 0.5465     |
| 0.032         | 7.06  | 120  | 0.0721          | 0.7535   | 0.8016        | 0.9741           | 0.9927              | 0.6106          | 0.9733         | 0.5338     |
| 0.0337        | 8.24  | 140  | 0.0719          | 0.7745   | 0.8530        | 0.9743           | 0.9873              | 0.7187          | 0.9733         | 0.5757     |
| 0.0398        | 9.41  | 160  | 0.0704          | 0.7732   | 0.8302        | 0.9756           | 0.9913              | 0.6690          | 0.9748         | 0.5715     |
| 0.0374        | 10.59 | 180  | 0.0724          | 0.7583   | 0.7995        | 0.9752           | 0.9941              | 0.6050          | 0.9744         | 0.5422     |
| 0.0334        | 11.76 | 200  | 0.0724          | 0.7721   | 0.8231        | 0.9760           | 0.9924              | 0.6537          | 0.9752         | 0.5690     |
| 0.025         | 12.94 | 220  | 0.0731          | 0.7725   | 0.8192        | 0.9763           | 0.9932              | 0.6452          | 0.9755         | 0.5694     |
| 0.0336        | 14.12 | 240  | 0.0699          | 0.7793   | 0.8334        | 0.9765           | 0.9919              | 0.6748          | 0.9757         | 0.5828     |
| 0.0321        | 15.29 | 260  | 0.0697          | 0.7825   | 0.8395        | 0.9767           | 0.9915              | 0.6875          | 0.9759         | 0.5891     |
| 0.0216        | 16.47 | 280  | 0.0752          | 0.7701   | 0.8176        | 0.9760           | 0.9930              | 0.6421          | 0.9752         | 0.5650     |
| 0.0178        | 17.65 | 300  | 0.0743          | 0.7753   | 0.8296        | 0.9761           | 0.9918              | 0.6674          | 0.9753         | 0.5752     |
| 0.0206        | 18.82 | 320  | 0.0717          | 0.7881   | 0.8488        | 0.9771           | 0.9909              | 0.7066          | 0.9763         | 0.5999     |
| 0.0162        | 20.0  | 340  | 0.0786          | 0.7694   | 0.8141        | 0.9761           | 0.9935              | 0.6347          | 0.9754         | 0.5634     |
| 0.0306        | 21.18 | 360  | 0.0785          | 0.7785   | 0.8275        | 0.9768           | 0.9929              | 0.6622          | 0.9760         | 0.5809     |
| 0.0179        | 22.35 | 380  | 0.0769          | 0.7816   | 0.8414        | 0.9764           | 0.9909              | 0.6919          | 0.9756         | 0.5876     |
| 0.0152        | 23.53 | 400  | 0.0776          | 0.7842   | 0.8461        | 0.9766           | 0.9906              | 0.7016          | 0.9758         | 0.5926     |
| 0.0245        | 24.71 | 420  | 0.0820          | 0.7725   | 0.8164        | 0.9765           | 0.9937              | 0.6390          | 0.9758         | 0.5692     |
| 0.0248        | 25.88 | 440  | 0.0829          | 0.7772   | 0.8268        | 0.9766           | 0.9928              | 0.6608          | 0.9759         | 0.5786     |
| 0.0176        | 27.06 | 460  | 0.0818          | 0.7761   | 0.8271        | 0.9764           | 0.9925              | 0.6617          | 0.9756         | 0.5767     |
| 0.0135        | 28.24 | 480  | 0.0816          | 0.7805   | 0.8384        | 0.9764           | 0.9913              | 0.6854          | 0.9756         | 0.5855     |
| 0.0343        | 29.41 | 500  | 0.0852          | 0.7777   | 0.8310        | 0.9764           | 0.9921              | 0.6699          | 0.9756         | 0.5798     |
| 0.0147        | 30.59 | 520  | 0.0851          | 0.7792   | 0.8367        | 0.9763           | 0.9913              | 0.6820          | 0.9755         | 0.5829     |
| 0.0119        | 31.76 | 540  | 0.0880          | 0.7800   | 0.8337        | 0.9767           | 0.9920              | 0.6754          | 0.9759         | 0.5842     |
| 0.0143        | 32.94 | 560  | 0.0899          | 0.7749   | 0.8241        | 0.9764           | 0.9928              | 0.6555          | 0.9756         | 0.5743     |
| 0.0122        | 34.12 | 580  | 0.0886          | 0.7810   | 0.8374        | 0.9766           | 0.9916              | 0.6832          | 0.9758         | 0.5863     |
| 0.0135        | 35.29 | 600  | 0.0908          | 0.7727   | 0.8206        | 0.9762           | 0.9930              | 0.6482          | 0.9755         | 0.5699     |
| 0.0203        | 36.47 | 620  | 0.0913          | 0.7758   | 0.8267        | 0.9764           | 0.9925              | 0.6608          | 0.9756         | 0.5759     |
| 0.0109        | 37.65 | 640  | 0.0898          | 0.7803   | 0.8337        | 0.9767           | 0.9921              | 0.6753          | 0.9759         | 0.5847     |
| 0.0141        | 38.82 | 660  | 0.0936          | 0.7774   | 0.8280        | 0.9766           | 0.9926              | 0.6634          | 0.9758         | 0.5790     |
| 0.0087        | 40.0  | 680  | 0.0903          | 0.7830   | 0.8493        | 0.9762           | 0.9898              | 0.7088          | 0.9753         | 0.5908     |
| 0.0099        | 41.18 | 700  | 0.0930          | 0.7779   | 0.8284        | 0.9766           | 0.9926              | 0.6641          | 0.9759         | 0.5799     |
| 0.0149        | 42.35 | 720  | 0.0908          | 0.7799   | 0.8320        | 0.9767           | 0.9923              | 0.6717          | 0.9760         | 0.5838     |
| 0.0168        | 43.53 | 740  | 0.0897          | 0.7864   | 0.8496        | 0.9768           | 0.9904              | 0.7087          | 0.9759         | 0.5969     |
| 0.0281        | 44.71 | 760  | 0.0954          | 0.7760   | 0.8259        | 0.9765           | 0.9927              | 0.6591          | 0.9757         | 0.5762     |
| 0.0102        | 45.88 | 780  | 0.0942          | 0.7819   | 0.8382        | 0.9767           | 0.9916              | 0.6849          | 0.9759         | 0.5879     |
| 0.0087        | 47.06 | 800  | 0.0948          | 0.7843   | 0.8422        | 0.9769           | 0.9913              | 0.6931          | 0.9761         | 0.5926     |
| 0.0166        | 48.24 | 820  | 0.0981          | 0.7777   | 0.8280        | 0.9766           | 0.9926              | 0.6634          | 0.9759         | 0.5796     |
| 0.0236        | 49.41 | 840  | 0.0972          | 0.7770   | 0.8274        | 0.9765           | 0.9926              | 0.6622          | 0.9758         | 0.5782     |
| 0.0168        | 50.59 | 860  | 0.0994          | 0.7751   | 0.8218        | 0.9766           | 0.9932              | 0.6505          | 0.9758         | 0.5743     |
| 0.017         | 51.76 | 880  | 0.0991          | 0.7779   | 0.8281        | 0.9767           | 0.9926              | 0.6635          | 0.9759         | 0.5799     |
| 0.0111        | 52.94 | 900  | 0.0994          | 0.7778   | 0.8266        | 0.9767           | 0.9929              | 0.6603          | 0.9760         | 0.5797     |
| 0.0202        | 54.12 | 920  | 0.0985          | 0.7845   | 0.8380        | 0.9772           | 0.9921              | 0.6839          | 0.9764         | 0.5926     |
| 0.0142        | 55.29 | 940  | 0.1025          | 0.7762   | 0.8240        | 0.9767           | 0.9931              | 0.6548          | 0.9759         | 0.5766     |
| 0.01          | 56.47 | 960  | 0.0997          | 0.7808   | 0.8346        | 0.9767           | 0.9920              | 0.6771          | 0.9759         | 0.5857     |
| 0.0127        | 57.65 | 980  | 0.1028          | 0.7797   | 0.8317        | 0.9767           | 0.9923              | 0.6712          | 0.9759         | 0.5835     |
| 0.0069        | 58.82 | 1000 | 0.1011          | 0.7834   | 0.8400        | 0.9768           | 0.9915              | 0.6885          | 0.9760         | 0.5907     |
| 0.0109        | 60.0  | 1020 | 0.1059          | 0.7775   | 0.8282        | 0.9766           | 0.9925              | 0.6638          | 0.9758         | 0.5792     |
| 0.0087        | 61.18 | 1040 | 0.1037          | 0.7793   | 0.8308        | 0.9767           | 0.9924              | 0.6692          | 0.9759         | 0.5826     |
| 0.0125        | 62.35 | 1060 | 0.1056          | 0.7784   | 0.8279        | 0.9768           | 0.9928              | 0.6630          | 0.9760         | 0.5808     |
| 0.0084        | 63.53 | 1080 | 0.1066          | 0.7803   | 0.8330        | 0.9768           | 0.9922              | 0.6737          | 0.9760         | 0.5847     |
| 0.0183        | 64.71 | 1100 | 0.1056          | 0.7806   | 0.8340        | 0.9767           | 0.9921              | 0.6759          | 0.9760         | 0.5853     |
| 0.0106        | 65.88 | 1120 | 0.1076          | 0.7768   | 0.8257        | 0.9766           | 0.9929              | 0.6586          | 0.9759         | 0.5778     |
| 0.0072        | 67.06 | 1140 | 0.1103          | 0.7771   | 0.8278        | 0.9765           | 0.9925              | 0.6630          | 0.9758         | 0.5784     |
| 0.0112        | 68.24 | 1160 | 0.1070          | 0.7799   | 0.8315        | 0.9768           | 0.9924              | 0.6705          | 0.9760         | 0.5838     |
| 0.0149        | 69.41 | 1180 | 0.1089          | 0.7778   | 0.8284        | 0.9766           | 0.9926              | 0.6642          | 0.9758         | 0.5797     |
| 0.0147        | 70.59 | 1200 | 0.1087          | 0.7805   | 0.8325        | 0.9768           | 0.9924              | 0.6727          | 0.9760         | 0.5850     |
| 0.013         | 71.76 | 1220 | 0.1081          | 0.7803   | 0.8331        | 0.9767           | 0.9922              | 0.6741          | 0.9760         | 0.5846     |
| 0.013         | 72.94 | 1240 | 0.1097          | 0.7789   | 0.8304        | 0.9767           | 0.9924              | 0.6683          | 0.9759         | 0.5818     |
| 0.0115        | 74.12 | 1260 | 0.1104          | 0.7773   | 0.8269        | 0.9766           | 0.9927              | 0.6610          | 0.9759         | 0.5787     |
| 0.0102        | 75.29 | 1280 | 0.1097          | 0.7795   | 0.8323        | 0.9767           | 0.9922              | 0.6725          | 0.9759         | 0.5831     |
| 0.0133        | 76.47 | 1300 | 0.1101          | 0.7808   | 0.8355        | 0.9767           | 0.9919              | 0.6791          | 0.9759         | 0.5857     |
| 0.013         | 77.65 | 1320 | 0.1111          | 0.7814   | 0.8358        | 0.9768           | 0.9919              | 0.6797          | 0.9760         | 0.5867     |
| 0.0068        | 78.82 | 1340 | 0.1107          | 0.7814   | 0.8362        | 0.9767           | 0.9919              | 0.6805          | 0.9759         | 0.5869     |
| 0.0036        | 80.0  | 1360 | 0.1136          | 0.7789   | 0.8313        | 0.9766           | 0.9923              | 0.6703          | 0.9758         | 0.5820     |
| 0.0163        | 81.18 | 1380 | 0.1123          | 0.7809   | 0.8347        | 0.9767           | 0.9920              | 0.6773          | 0.9760         | 0.5858     |
| 0.0065        | 82.35 | 1400 | 0.1117          | 0.7811   | 0.8356        | 0.9767           | 0.9919              | 0.6794          | 0.9759         | 0.5862     |
| 0.018         | 83.53 | 1420 | 0.1121          | 0.7811   | 0.8360        | 0.9767           | 0.9918              | 0.6802          | 0.9759         | 0.5864     |
| 0.0122        | 84.71 | 1440 | 0.1123          | 0.7803   | 0.8346        | 0.9766           | 0.9919              | 0.6772          | 0.9759         | 0.5847     |
| 0.0085        | 85.88 | 1460 | 0.1139          | 0.7783   | 0.8300        | 0.9766           | 0.9924              | 0.6676          | 0.9758         | 0.5808     |
| 0.0074        | 87.06 | 1480 | 0.1130          | 0.7820   | 0.8364        | 0.9768           | 0.9919              | 0.6808          | 0.9760         | 0.5879     |
| 0.0124        | 88.24 | 1500 | 0.1141          | 0.7801   | 0.8332        | 0.9767           | 0.9921              | 0.6743          | 0.9759         | 0.5843     |
| 0.0114        | 89.41 | 1520 | 0.1152          | 0.7783   | 0.8301        | 0.9766           | 0.9924              | 0.6678          | 0.9758         | 0.5808     |
| 0.0113        | 90.59 | 1540 | 0.1153          | 0.7784   | 0.8302        | 0.9766           | 0.9924              | 0.6680          | 0.9758         | 0.5811     |
| 0.0076        | 91.76 | 1560 | 0.1153          | 0.7778   | 0.8286        | 0.9766           | 0.9925              | 0.6647          | 0.9758         | 0.5797     |
| 0.0128        | 92.94 | 1580 | 0.1149          | 0.7785   | 0.8308        | 0.9766           | 0.9923              | 0.6694          | 0.9758         | 0.5813     |
| 0.0046        | 94.12 | 1600 | 0.1154          | 0.7781   | 0.8298        | 0.9766           | 0.9923              | 0.6673          | 0.9758         | 0.5803     |
| 0.0091        | 95.29 | 1620 | 0.1143          | 0.7792   | 0.8318        | 0.9766           | 0.9922              | 0.6713          | 0.9759         | 0.5826     |
| 0.0121        | 96.47 | 1640 | 0.1153          | 0.7784   | 0.8302        | 0.9766           | 0.9924              | 0.6681          | 0.9758         | 0.5810     |
| 0.0082        | 97.65 | 1660 | 0.1151          | 0.7787   | 0.8308        | 0.9766           | 0.9923              | 0.6694          | 0.9758         | 0.5815     |
| 0.0094        | 98.82 | 1680 | 0.1155          | 0.7784   | 0.8295        | 0.9766           | 0.9925              | 0.6664          | 0.9759         | 0.5808     |
| 0.0067        | 100.0 | 1700 | 0.1156          | 0.7785   | 0.8298        | 0.9767           | 0.9925              | 0.6671          | 0.9759         | 0.5812     |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3