Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- IvanTi/ppo-lunarlander-v0.zip +3 -0
- IvanTi/ppo-lunarlander-v0/_stable_baselines3_version +1 -0
- IvanTi/ppo-lunarlander-v0/data +94 -0
- IvanTi/ppo-lunarlander-v0/policy.optimizer.pth +3 -0
- IvanTi/ppo-lunarlander-v0/policy.pth +3 -0
- IvanTi/ppo-lunarlander-v0/pytorch_variables.pth +3 -0
- IvanTi/ppo-lunarlander-v0/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
IvanTi/ppo-lunarlander-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad1b62a6cffc75bd670b3f007e46153bc564e49b39a695225dfbeedecc7ae828
|
3 |
+
size 144032
|
IvanTi/ppo-lunarlander-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
IvanTi/ppo-lunarlander-v0/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcdff649200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcdff649290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcdff649320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcdff6493b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcdff649440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcdff6494d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcdff649560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcdff6495f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcdff649680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcdff649710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcdff6497a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcdff693780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652122347.2596664,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1+xT6qmmO9s37bOiT7E7kh8OC9B8UzugAAgD8AAIA/za4uvdm3tz+2D8y99PedvnC4SbumhPg8AAAAAAAAAACmWMy9jwYNuuU7m7sBtVw4Qt1TOsZttjcAAIA/AACAP8rrTb726wu8yV0tu4Ln67iyXHc9IrrEOQAAgD8AAIA/gJQMPiNqqT/deeY+tb2bvnDHbD4TOlY+AAAAAAAAAAAzoeW8FIqAuhtCrbpNZ3q2ilJsu5C23TUAAIA/AACAPzNLtLyF89i5gnDxOM1BMLL8Kc+61nANuAAAgD8AAIA/mvzNvVz7VbrKtBU8tMZ7NeHPWTpq9n00AACAPwAAgD/Al2C+RcWcPJbeMT3xVS49hRDsviZbLj4AAIA/AACAPw03wD0pUBu6AOROuukwVzZbXJU6ALVyOQAAgD8AAIA/2v4svwIeZ75T5iO74E5cOGn+db5iSwc5AACAPwAAgD/mPag9uE7iuctQ5rvugjU1DM2GO3L7oLQAAIA/AACAPwCU/rwFC68/thIgvmbAmr6w/g29sE4UvAAAAAAAAAAAU3BIPiRolD74IXa+G9yzvuYNPL2TNpI9AAAAAAAAAAAaDQM95/cIP1P61L09ocq+CtwDPJXqcz0AAAAAAAAAAF0Qsr5F6sq96fCyvcGyFT2iIPk+tvqUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1vz4SwuEYUCUhpRSlIwBbJRN6AOMAXSUR0B9XDPKMefadX2UKGgGaAloD0MIBwjm6PF+W0CUhpRSlGgVTegDaBZHQH1qG/vfCQ91fZQoaAZoCWgPQwhSmWIOgso0QJSGlFKUaBVLy2gWR0B9atZ4fOlgdX2UKGgGaAloD0MI7nppioCFYECUhpRSlGgVTegDaBZHQH1+p9/jKgZ1fZQoaAZoCWgPQwjKMVncf/tcQJSGlFKUaBVN6ANoFkdAfYyQ2/BWP3V9lChoBmgJaA9DCGgDsAERciVAlIaUUpRoFUv1aBZHQH4vcriEQGx1fZQoaAZoCWgPQwiLNzKP/LhhQJSGlFKUaBVN6ANoFkdAfjUHoouwo3V9lChoBmgJaA9DCCoBMQkX3mBAlIaUUpRoFU3oA2gWR0B+Oab2Dg62dX2UKGgGaAloD0MIINRFCmU7YkCUhpRSlGgVTegDaBZHQH5Cc0tRNyp1fZQoaAZoCWgPQwjHLHsSWJ9gQJSGlFKUaBVN6ANoFkdAfkT8xKxs23V9lChoBmgJaA9DCCuJ7IMsF11AlIaUUpRoFU3oA2gWR0B+Y6TfR/mUdX2UKGgGaAloD0MIrcCQ1a3zVECUhpRSlGgVTegDaBZHQH5p+OwPiDN1fZQoaAZoCWgPQwjHEtbG2FBgQJSGlFKUaBVN6ANoFkdAfnVL+xW1dHV9lChoBmgJaA9DCJscPulEtldAlIaUUpRoFU3oA2gWR0B+hUXenAIqdX2UKGgGaAloD0MIjQsHQrKjXUCUhpRSlGgVTegDaBZHQH6ge0b961N1fZQoaAZoCWgPQwh8fEJ23uNfQJSGlFKUaBVN6ANoFkdAfrZ2exwAEXV9lChoBmgJaA9DCAWGrG71HCnAlIaUUpRoFU0yAWgWR0B+vpVlwtJ4dX2UKGgGaAloD0MIaOif4OJ8YECUhpRSlGgVTegDaBZHQH7CP6wdKdx1fZQoaAZoCWgPQwhLP+Hs1uZOQJSGlFKUaBVN6ANoFkdAfus1vES/TXV9lChoBmgJaA9DCJRt4A7UHmFAlIaUUpRoFU3oA2gWR0B+6+Cxu89PdX2UKGgGaAloD0MIBiy5isUAW0CUhpRSlGgVTegDaBZHQH79nKwIMSd1fZQoaAZoCWgPQwj4p1SJMmhjQJSGlFKUaBVN6ANoFkdAfwqi/fwZwXV9lChoBmgJaA9DCHGOOjquSVpAlIaUUpRoFU3oA2gWR0B/rkFaB7NTdX2UKGgGaAloD0MICyjU00eIW0CUhpRSlGgVTegDaBZHQH+zhCdBjWl1fZQoaAZoCWgPQwi0WfW52k5HQJSGlFKUaBVN6ANoFkdAf7fSZBsyi3V9lChoBmgJaA9DCJOsw9FVXl5AlIaUUpRoFU3oA2gWR0B/wM7+1jRVdX2UKGgGaAloD0MIwt7EkJxPYkCUhpRSlGgVTegDaBZHQH/DPs7dSEV1fZQoaAZoCWgPQwiFXRQ98EEgQJSGlFKUaBVLxWgWR0B/4X2YfGModX2UKGgGaAloD0MI5Q0w8x0BYkCUhpRSlGgVTegDaBZHQH/i9gv114h1fZQoaAZoCWgPQwg2kgThClJZQJSGlFKUaBVN6ANoFkdAf+mMbm2b5XV9lChoBmgJaA9DCGfROxVwbVZAlIaUUpRoFU3oA2gWR0CABATxoZhsdX2UKGgGaAloD0MIEVFM3gBQV0CUhpRSlGgVTegDaBZHQIATgrDqGDd1fZQoaAZoCWgPQwj2X+emzV5cQJSGlFKUaBVN6ANoFkdAgCC/kNnXd3V9lChoBmgJaA9DCAouVtRgIlxAlIaUUpRoFU3oA2gWR0CAJbR3u/lAdX2UKGgGaAloD0MI1/fhICF2V0CUhpRSlGgVTegDaBZHQIAn0iUxEfF1fZQoaAZoCWgPQwh7+gj84bthQJSGlFKUaBVN6ANoFkdAgD6Mcp9ZzXV9lChoBmgJaA9DCFrW/WMhKmBAlIaUUpRoFU3oA2gWR0CAPupo9LYgdX2UKGgGaAloD0MIDf/pBgq7YECUhpRSlGgVTegDaBZHQIBITrZ8KHB1fZQoaAZoCWgPQwirBIvDmdtZQJSGlFKUaBVN6ANoFkdAgE8f/WDpT3V9lChoBmgJaA9DCJ/Ik6RrKFpAlIaUUpRoFU3oA2gWR0CAoLCQcPvsdX2UKGgGaAloD0MIPGu3XWiuI8CUhpRSlGgVS+RoFkdAgKUJosZpBXV9lChoBmgJaA9DCJwZ/Wg4VltAlIaUUpRoFU3oA2gWR0CApY+oLofTdX2UKGgGaAloD0MIq5hKP+GiZMCUhpRSlGgVTbMBaBZHQICmBMlC1JF1fZQoaAZoCWgPQwiOXDelvP5ZQJSGlFKUaBVN6ANoFkdAgKnoVEd/8XV9lChoBmgJaA9DCGXkLOxpDmJAlIaUUpRoFU3oA2gWR0CAqzDQZ4wAdX2UKGgGaAloD0MINLqD2JlWY0CUhpRSlGgVTegDaBZHQIC4/aews5J1fZQoaAZoCWgPQwjGounsZOpZQJSGlFKUaBVN6ANoFkdAgLmjDKoybnV9lChoBmgJaA9DCEEPtW2Y62FAlIaUUpRoFU3oA2gWR0CAvHwzch1UdX2UKGgGaAloD0MIyO9t+rN3M0CUhpRSlGgVTQsBaBZHQIDGXlKbrkd1fZQoaAZoCWgPQwhqTfOOU/9cQJSGlFKUaBVN6ANoFkdAgMlQqqfe13V9lChoBmgJaA9DCJfHmpFBNGDAlIaUUpRoFU2zAWgWR0CA0MjdpItldX2UKGgGaAloD0MIda+T+rKzWUCUhpRSlGgVTegDaBZHQIDWUGPgeil1fZQoaAZoCWgPQwgCY30Dk+NeQJSGlFKUaBVN6ANoFkdAgOGqujh1knV9lChoBmgJaA9DCLiwbrw76ixAlIaUUpRoFUvyaBZHQIDmQcHWz4V1fZQoaAZoCWgPQwgrieyDrJlhQJSGlFKUaBVN6ANoFkdAgOfYGD+R5nV9lChoBmgJaA9DCGXHRiDeLGBAlIaUUpRoFU3oA2gWR0CA/gR28qWkdX2UKGgGaAloD0MIhZZ1/1hQOECUhpRSlGgVS95oFkdAgQH0cn3L3nV9lChoBmgJaA9DCAJhp1g101dAlIaUUpRoFU3oA2gWR0CBB/tygf2cdX2UKGgGaAloD0MID0WBPpHHSECUhpRSlGgVTRwBaBZHQIELfEKmbb11fZQoaAZoCWgPQwiIn/8evCBfQJSGlFKUaBVN6ANoFkdAgQ66bF0gbXV9lChoBmgJaA9DCEuPpnoySGJAlIaUUpRoFU3oA2gWR0CBZIJzkp7UdX2UKGgGaAloD0MIGof6XdieZECUhpRSlGgVTegDaBZHQIFlCQiiZfF1fZQoaAZoCWgPQwh+4gD6ffRiQJSGlFKUaBVN6ANoFkdAgWWAskIHDHV9lChoBmgJaA9DCKA1P/7SWltAlIaUUpRoFU3oA2gWR0CBag5Lh73PdX2UKGgGaAloD0MI6KViY968YECUhpRSlGgVTegDaBZHQIF346XBxgl1fZQoaAZoCWgPQwjfv3lx4kBfQJSGlFKUaBVN6ANoFkdAgXiWzF+/g3V9lChoBmgJaA9DCD2YFB+f8WJAlIaUUpRoFU3oA2gWR0CBe3b9If8udX2UKGgGaAloD0MIPrDjv8AWYECUhpRSlGgVTegDaBZHQIGGE4Pwuul1fZQoaAZoCWgPQwjZk8DmnG5mQJSGlFKUaBVN6ANoFkdAgZDZ7ojfN3V9lChoBmgJaA9DCOJZgoyAmlBAlIaUUpRoFUvkaBZHQIGSLZ+QU6B1fZQoaAZoCWgPQwgAdJgvL/leQJSGlFKUaBVN6ANoFkdAgZaGmtQsPXV9lChoBmgJaA9DCLJkjuVdwmBAlIaUUpRoFU3oA2gWR0CBoiH5aePJdX2UKGgGaAloD0MICRUcXhCJKMCUhpRSlGgVS/BoFkdAga8tb9qDb3V9lChoBmgJaA9DCJLM6h1uhFxAlIaUUpRoFU3oA2gWR0CBwXNfw7T2dX2UKGgGaAloD0MIEw1S8BQuYUCUhpRSlGgVTegDaBZHQIHFmf29L6F1fZQoaAZoCWgPQwiHi9zT1V5XQJSGlFKUaBVN6ANoFkdAgcu8/MW43HV9lChoBmgJaA9DCFM8LqrF8GVAlIaUUpRoFU3oA2gWR0CBz3FF2FFldX2UKGgGaAloD0MIthSQ9r9HYECUhpRSlGgVTegDaBZHQIHSnsAvL5h1fZQoaAZoCWgPQwhgksoUc7plQJSGlFKUaBVN6ANoFkdAgd4jSw4bTHV9lChoBmgJaA9DCKwahLndxWNAlIaUUpRoFU3oA2gWR0CB3pnaFmFrdX2UKGgGaAloD0MICmZMwZqKYkCUhpRSlGgVTegDaBZHQIHe/wXqJMx1fZQoaAZoCWgPQwjFAfT7/gBTQJSGlFKUaBVN6ANoFkdAgizdMK1G9nV9lChoBmgJaA9DCC1cVmEzME9AlIaUUpRoFU0CAWgWR0CCMbBeHBUJdX2UKGgGaAloD0MILLmKxe8mYUCUhpRSlGgVTegDaBZHQII6WZqmCRR1fZQoaAZoCWgPQwiRCfg1ksJgQJSGlFKUaBVN6ANoFkdAgj0GF8G9pXV9lChoBmgJaA9DCDj0Fg/vxT5AlIaUUpRoFUv/aBZHQIJBU4cWCVd1fZQoaAZoCWgPQwgOoyB4fKxiQJSGlFKUaBVN6ANoFkdAgkZ69K28ZnV9lChoBmgJaA9DCPcF9MKdLV9AlIaUUpRoFU3oA2gWR0CCUizPa+N+dX2UKGgGaAloD0MI7DTSUvlfY0CUhpRSlGgVTegDaBZHQIJWPa+N96V1fZQoaAZoCWgPQwitMlNafyVhQJSGlFKUaBVN6ANoFkdAgmFX5nDiwXV9lChoBmgJaA9DCEa0HVN3SV5AlIaUUpRoFU3oA2gWR0CCbUwpON5udX2UKGgGaAloD0MICkyndRucMkCUhpRSlGgVS9RoFkdAgm9kCeVcEHV9lChoBmgJaA9DCPCmW3aI3xZAlIaUUpRoFUvDaBZHQIJ4ZBeHBUJ1fZQoaAZoCWgPQwitTWN7LZNYQJSGlFKUaBVN6ANoFkdAgnybCaZx73V9lChoBmgJaA9DCM1aCkj77lxAlIaUUpRoFU3oA2gWR0CCf+4axX4kdX2UKGgGaAloD0MI7nppioAeY0CUhpRSlGgVTegDaBZHQIKIa6cy31B1fZQoaAZoCWgPQwhfYizTL1tYQJSGlFKUaBVN6ANoFkdAgotuwX668XV9lChoBmgJaA9DCI4+5gMCh2JAlIaUUpRoFU3oA2gWR0CClySzPa+OdX2UKGgGaAloD0MIOgK4WbyIIkCUhpRSlGgVTegDaBZHQIKYFwJgLJF1fZQoaAZoCWgPQwja/wBr1dJKQJSGlFKUaBVL9GgWR0CCmLLPD50sdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 32,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
IvanTi/ppo-lunarlander-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9abcc739feb270bf9efa91d42e609882f631ee3c693e8ed89d238ecad4fce22
|
3 |
+
size 84829
|
IvanTi/ppo-lunarlander-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91be15e9d0aeee0a1b54f5933b9b5b7837912d30e706a2738e6078a5ad5c9a2a
|
3 |
+
size 43201
|
IvanTi/ppo-lunarlander-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
IvanTi/ppo-lunarlander-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 215.58 +/- 23.77
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcdff649200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcdff649290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcdff649320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcdff6493b0>", "_build": "<function ActorCriticPolicy._build at 0x7fcdff649440>", "forward": "<function ActorCriticPolicy.forward at 0x7fcdff6494d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcdff649560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcdff6495f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcdff649680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcdff649710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcdff6497a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcdff693780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652122347.2596664, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1+xT6qmmO9s37bOiT7E7kh8OC9B8UzugAAgD8AAIA/za4uvdm3tz+2D8y99PedvnC4SbumhPg8AAAAAAAAAACmWMy9jwYNuuU7m7sBtVw4Qt1TOsZttjcAAIA/AACAP8rrTb726wu8yV0tu4Ln67iyXHc9IrrEOQAAgD8AAIA/gJQMPiNqqT/deeY+tb2bvnDHbD4TOlY+AAAAAAAAAAAzoeW8FIqAuhtCrbpNZ3q2ilJsu5C23TUAAIA/AACAPzNLtLyF89i5gnDxOM1BMLL8Kc+61nANuAAAgD8AAIA/mvzNvVz7VbrKtBU8tMZ7NeHPWTpq9n00AACAPwAAgD/Al2C+RcWcPJbeMT3xVS49hRDsviZbLj4AAIA/AACAPw03wD0pUBu6AOROuukwVzZbXJU6ALVyOQAAgD8AAIA/2v4svwIeZ75T5iO74E5cOGn+db5iSwc5AACAPwAAgD/mPag9uE7iuctQ5rvugjU1DM2GO3L7oLQAAIA/AACAPwCU/rwFC68/thIgvmbAmr6w/g29sE4UvAAAAAAAAAAAU3BIPiRolD74IXa+G9yzvuYNPL2TNpI9AAAAAAAAAAAaDQM95/cIP1P61L09ocq+CtwDPJXqcz0AAAAAAAAAAF0Qsr5F6sq96fCyvcGyFT2iIPk+tvqUvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1vz4SwuEYUCUhpRSlIwBbJRN6AOMAXSUR0B9XDPKMefadX2UKGgGaAloD0MIBwjm6PF+W0CUhpRSlGgVTegDaBZHQH1qG/vfCQ91fZQoaAZoCWgPQwhSmWIOgso0QJSGlFKUaBVLy2gWR0B9atZ4fOlgdX2UKGgGaAloD0MI7nppioCFYECUhpRSlGgVTegDaBZHQH1+p9/jKgZ1fZQoaAZoCWgPQwjKMVncf/tcQJSGlFKUaBVN6ANoFkdAfYyQ2/BWP3V9lChoBmgJaA9DCGgDsAERciVAlIaUUpRoFUv1aBZHQH4vcriEQGx1fZQoaAZoCWgPQwiLNzKP/LhhQJSGlFKUaBVN6ANoFkdAfjUHoouwo3V9lChoBmgJaA9DCCoBMQkX3mBAlIaUUpRoFU3oA2gWR0B+Oab2Dg62dX2UKGgGaAloD0MIINRFCmU7YkCUhpRSlGgVTegDaBZHQH5Cc0tRNyp1fZQoaAZoCWgPQwjHLHsSWJ9gQJSGlFKUaBVN6ANoFkdAfkT8xKxs23V9lChoBmgJaA9DCCuJ7IMsF11AlIaUUpRoFU3oA2gWR0B+Y6TfR/mUdX2UKGgGaAloD0MIrcCQ1a3zVECUhpRSlGgVTegDaBZHQH5p+OwPiDN1fZQoaAZoCWgPQwjHEtbG2FBgQJSGlFKUaBVN6ANoFkdAfnVL+xW1dHV9lChoBmgJaA9DCJscPulEtldAlIaUUpRoFU3oA2gWR0B+hUXenAIqdX2UKGgGaAloD0MIjQsHQrKjXUCUhpRSlGgVTegDaBZHQH6ge0b961N1fZQoaAZoCWgPQwh8fEJ23uNfQJSGlFKUaBVN6ANoFkdAfrZ2exwAEXV9lChoBmgJaA9DCAWGrG71HCnAlIaUUpRoFU0yAWgWR0B+vpVlwtJ4dX2UKGgGaAloD0MIaOif4OJ8YECUhpRSlGgVTegDaBZHQH7CP6wdKdx1fZQoaAZoCWgPQwhLP+Hs1uZOQJSGlFKUaBVN6ANoFkdAfus1vES/TXV9lChoBmgJaA9DCJRt4A7UHmFAlIaUUpRoFU3oA2gWR0B+6+Cxu89PdX2UKGgGaAloD0MIBiy5isUAW0CUhpRSlGgVTegDaBZHQH79nKwIMSd1fZQoaAZoCWgPQwj4p1SJMmhjQJSGlFKUaBVN6ANoFkdAfwqi/fwZwXV9lChoBmgJaA9DCHGOOjquSVpAlIaUUpRoFU3oA2gWR0B/rkFaB7NTdX2UKGgGaAloD0MICyjU00eIW0CUhpRSlGgVTegDaBZHQH+zhCdBjWl1fZQoaAZoCWgPQwi0WfW52k5HQJSGlFKUaBVN6ANoFkdAf7fSZBsyi3V9lChoBmgJaA9DCJOsw9FVXl5AlIaUUpRoFU3oA2gWR0B/wM7+1jRVdX2UKGgGaAloD0MIwt7EkJxPYkCUhpRSlGgVTegDaBZHQH/DPs7dSEV1fZQoaAZoCWgPQwiFXRQ98EEgQJSGlFKUaBVLxWgWR0B/4X2YfGModX2UKGgGaAloD0MI5Q0w8x0BYkCUhpRSlGgVTegDaBZHQH/i9gv114h1fZQoaAZoCWgPQwg2kgThClJZQJSGlFKUaBVN6ANoFkdAf+mMbm2b5XV9lChoBmgJaA9DCGfROxVwbVZAlIaUUpRoFU3oA2gWR0CABATxoZhsdX2UKGgGaAloD0MIEVFM3gBQV0CUhpRSlGgVTegDaBZHQIATgrDqGDd1fZQoaAZoCWgPQwj2X+emzV5cQJSGlFKUaBVN6ANoFkdAgCC/kNnXd3V9lChoBmgJaA9DCAouVtRgIlxAlIaUUpRoFU3oA2gWR0CAJbR3u/lAdX2UKGgGaAloD0MI1/fhICF2V0CUhpRSlGgVTegDaBZHQIAn0iUxEfF1fZQoaAZoCWgPQwh7+gj84bthQJSGlFKUaBVN6ANoFkdAgD6Mcp9ZzXV9lChoBmgJaA9DCFrW/WMhKmBAlIaUUpRoFU3oA2gWR0CAPupo9LYgdX2UKGgGaAloD0MIDf/pBgq7YECUhpRSlGgVTegDaBZHQIBITrZ8KHB1fZQoaAZoCWgPQwirBIvDmdtZQJSGlFKUaBVN6ANoFkdAgE8f/WDpT3V9lChoBmgJaA9DCJ/Ik6RrKFpAlIaUUpRoFU3oA2gWR0CAoLCQcPvsdX2UKGgGaAloD0MIPGu3XWiuI8CUhpRSlGgVS+RoFkdAgKUJosZpBXV9lChoBmgJaA9DCJwZ/Wg4VltAlIaUUpRoFU3oA2gWR0CApY+oLofTdX2UKGgGaAloD0MIq5hKP+GiZMCUhpRSlGgVTbMBaBZHQICmBMlC1JF1fZQoaAZoCWgPQwiOXDelvP5ZQJSGlFKUaBVN6ANoFkdAgKnoVEd/8XV9lChoBmgJaA9DCGXkLOxpDmJAlIaUUpRoFU3oA2gWR0CAqzDQZ4wAdX2UKGgGaAloD0MINLqD2JlWY0CUhpRSlGgVTegDaBZHQIC4/aews5J1fZQoaAZoCWgPQwjGounsZOpZQJSGlFKUaBVN6ANoFkdAgLmjDKoybnV9lChoBmgJaA9DCEEPtW2Y62FAlIaUUpRoFU3oA2gWR0CAvHwzch1UdX2UKGgGaAloD0MIyO9t+rN3M0CUhpRSlGgVTQsBaBZHQIDGXlKbrkd1fZQoaAZoCWgPQwhqTfOOU/9cQJSGlFKUaBVN6ANoFkdAgMlQqqfe13V9lChoBmgJaA9DCJfHmpFBNGDAlIaUUpRoFU2zAWgWR0CA0MjdpItldX2UKGgGaAloD0MIda+T+rKzWUCUhpRSlGgVTegDaBZHQIDWUGPgeil1fZQoaAZoCWgPQwgCY30Dk+NeQJSGlFKUaBVN6ANoFkdAgOGqujh1knV9lChoBmgJaA9DCLiwbrw76ixAlIaUUpRoFUvyaBZHQIDmQcHWz4V1fZQoaAZoCWgPQwgrieyDrJlhQJSGlFKUaBVN6ANoFkdAgOfYGD+R5nV9lChoBmgJaA9DCGXHRiDeLGBAlIaUUpRoFU3oA2gWR0CA/gR28qWkdX2UKGgGaAloD0MIhZZ1/1hQOECUhpRSlGgVS95oFkdAgQH0cn3L3nV9lChoBmgJaA9DCAJhp1g101dAlIaUUpRoFU3oA2gWR0CBB/tygf2cdX2UKGgGaAloD0MID0WBPpHHSECUhpRSlGgVTRwBaBZHQIELfEKmbb11fZQoaAZoCWgPQwiIn/8evCBfQJSGlFKUaBVN6ANoFkdAgQ66bF0gbXV9lChoBmgJaA9DCEuPpnoySGJAlIaUUpRoFU3oA2gWR0CBZIJzkp7UdX2UKGgGaAloD0MIGof6XdieZECUhpRSlGgVTegDaBZHQIFlCQiiZfF1fZQoaAZoCWgPQwh+4gD6ffRiQJSGlFKUaBVN6ANoFkdAgWWAskIHDHV9lChoBmgJaA9DCKA1P/7SWltAlIaUUpRoFU3oA2gWR0CBag5Lh73PdX2UKGgGaAloD0MI6KViY968YECUhpRSlGgVTegDaBZHQIF346XBxgl1fZQoaAZoCWgPQwjfv3lx4kBfQJSGlFKUaBVN6ANoFkdAgXiWzF+/g3V9lChoBmgJaA9DCD2YFB+f8WJAlIaUUpRoFU3oA2gWR0CBe3b9If8udX2UKGgGaAloD0MIPrDjv8AWYECUhpRSlGgVTegDaBZHQIGGE4Pwuul1fZQoaAZoCWgPQwjZk8DmnG5mQJSGlFKUaBVN6ANoFkdAgZDZ7ojfN3V9lChoBmgJaA9DCOJZgoyAmlBAlIaUUpRoFUvkaBZHQIGSLZ+QU6B1fZQoaAZoCWgPQwgAdJgvL/leQJSGlFKUaBVN6ANoFkdAgZaGmtQsPXV9lChoBmgJaA9DCLJkjuVdwmBAlIaUUpRoFU3oA2gWR0CBoiH5aePJdX2UKGgGaAloD0MICRUcXhCJKMCUhpRSlGgVS/BoFkdAga8tb9qDb3V9lChoBmgJaA9DCJLM6h1uhFxAlIaUUpRoFU3oA2gWR0CBwXNfw7T2dX2UKGgGaAloD0MIEw1S8BQuYUCUhpRSlGgVTegDaBZHQIHFmf29L6F1fZQoaAZoCWgPQwiHi9zT1V5XQJSGlFKUaBVN6ANoFkdAgcu8/MW43HV9lChoBmgJaA9DCFM8LqrF8GVAlIaUUpRoFU3oA2gWR0CBz3FF2FFldX2UKGgGaAloD0MIthSQ9r9HYECUhpRSlGgVTegDaBZHQIHSnsAvL5h1fZQoaAZoCWgPQwhgksoUc7plQJSGlFKUaBVN6ANoFkdAgd4jSw4bTHV9lChoBmgJaA9DCKwahLndxWNAlIaUUpRoFU3oA2gWR0CB3pnaFmFrdX2UKGgGaAloD0MICmZMwZqKYkCUhpRSlGgVTegDaBZHQIHe/wXqJMx1fZQoaAZoCWgPQwjFAfT7/gBTQJSGlFKUaBVN6ANoFkdAgizdMK1G9nV9lChoBmgJaA9DCC1cVmEzME9AlIaUUpRoFU0CAWgWR0CCMbBeHBUJdX2UKGgGaAloD0MILLmKxe8mYUCUhpRSlGgVTegDaBZHQII6WZqmCRR1fZQoaAZoCWgPQwiRCfg1ksJgQJSGlFKUaBVN6ANoFkdAgj0GF8G9pXV9lChoBmgJaA9DCDj0Fg/vxT5AlIaUUpRoFUv/aBZHQIJBU4cWCVd1fZQoaAZoCWgPQwgOoyB4fKxiQJSGlFKUaBVN6ANoFkdAgkZ69K28ZnV9lChoBmgJaA9DCPcF9MKdLV9AlIaUUpRoFU3oA2gWR0CCUizPa+N+dX2UKGgGaAloD0MI7DTSUvlfY0CUhpRSlGgVTegDaBZHQIJWPa+N96V1fZQoaAZoCWgPQwitMlNafyVhQJSGlFKUaBVN6ANoFkdAgmFX5nDiwXV9lChoBmgJaA9DCEa0HVN3SV5AlIaUUpRoFU3oA2gWR0CCbUwpON5udX2UKGgGaAloD0MICkyndRucMkCUhpRSlGgVS9RoFkdAgm9kCeVcEHV9lChoBmgJaA9DCPCmW3aI3xZAlIaUUpRoFUvDaBZHQIJ4ZBeHBUJ1fZQoaAZoCWgPQwitTWN7LZNYQJSGlFKUaBVN6ANoFkdAgnybCaZx73V9lChoBmgJaA9DCM1aCkj77lxAlIaUUpRoFU3oA2gWR0CCf+4axX4kdX2UKGgGaAloD0MI7nppioAeY0CUhpRSlGgVTegDaBZHQIKIa6cy31B1fZQoaAZoCWgPQwhfYizTL1tYQJSGlFKUaBVN6ANoFkdAgotuwX668XV9lChoBmgJaA9DCI4+5gMCh2JAlIaUUpRoFU3oA2gWR0CClySzPa+OdX2UKGgGaAloD0MIOgK4WbyIIkCUhpRSlGgVTegDaBZHQIKYFwJgLJF1fZQoaAZoCWgPQwja/wBr1dJKQJSGlFKUaBVL9GgWR0CCmLLPD50sdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936c2c99284cddecee3b7ce5e06e6514d9652ba51fd062c25b6a4d86a6592aa5
|
3 |
+
size 238585
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.57943948502626, "std_reward": 23.766834082268343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T19:39:08.651215"}
|