Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Cargar el modelo desde Hugging Face
|
7 |
+
model = tf.keras.models.load_model("ItsEnder/demo_model_deploy/resolve/main/model_mobileNetV2_MAX_70batch.h5")
|
8 |
+
|
9 |
+
# Funci贸n para preprocesar las im谩genes
|
10 |
+
def preprocess_image(img):
|
11 |
+
img = img.resize((224, 224))
|
12 |
+
img = np.array(img)
|
13 |
+
img = np.expand_dims(img, axis=0)
|
14 |
+
img = img / 255.0 # Normalizaci贸n
|
15 |
+
return img
|
16 |
+
|
17 |
+
# Funci贸n para hacer predicciones
|
18 |
+
def predict(img):
|
19 |
+
img_array = preprocess_image(img)
|
20 |
+
prediction = model.predict(img_array)
|
21 |
+
predicted_class = np.argmax(prediction)
|
22 |
+
return predicted_class
|
23 |
+
|
24 |
+
# Crear la interfaz con Gradio
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs="image",
|
28 |
+
outputs="label",
|
29 |
+
title="Clasificaci贸n de im谩genes con MobileNetV2",
|
30 |
+
description="Sube una imagen y obt茅n la clase predicha."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Ejecutar la interfaz
|
34 |
+
interface.launch()
|