a2c-AntBulletEnv-v0 / config.json
Issacwong's picture
Initial commit
ea15e9e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f39ff876280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f39ff876310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f39ff8763a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f39ff876430>", "_build": "<function ActorCriticPolicy._build at 0x7f39ff8764c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f39ff876550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f39ff8765e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f39ff876670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f39ff876700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f39ff876790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f39ff876820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f39ff8768b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f39ff879300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681463274522173412, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFlYxj/2RQo/dZlmPVMlL0DIHsQ/Z6KHPyW0kz/Eso6/iFVlvrkF9758GBk/6amhv7sItD9Zyca7OAg6v30edT8LRqC+GdeMv36SFT/BUbS+SV83v+h9+r9a6RU/bNSbvqD7dr+/BRw/z3GkPjgIED/LXzE9ci9xPykAHb9mWW2/Hgq/vayxp74/SSU+pnmHPi7ojr8lLoG5BCK2PtPejz6HQaO/WHBFwJ/GB798Zu8+YAQOvndHir4y/fK9xG/iPlO/Zj7eqwJAcVNqvwUhHj5TrIQ/YwXSv89xpD47geO/wrBXP6eV5D69hik+H1q8P6TqqT8F9ag/l/dnPx7cJb+9zvE9hb1iPfpBC0AE8bU9HwNGPyoStz6yoDS/Axz7PrNoET8XQKi/VzMvPzN+xTxwJi0/29zEv92/SD/5L7g+oPt2v78FHD/PcaQ+OAgQP/WK6T6r+fI+Xz8JPoSmiT8js58/KFSnPxGLOD+sqwe/63tovqQsuT8uTu4/OzGFP+A+Pr94VZo/zUaMv7wJmL5w5bo+9/u4vcK+Lz8kCZs87lbHP/ErLb9ohWo//dUTP6D7dr+/BRw/z3GkPjgIED+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABdRSG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1BgOPgAAAACoQvq/AAAAAMLLyD0AAAAA8rvrPwAAAABRiiQ9AAAAAGkw9j8AAAAAnpHePQAAAABsbPO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHI0dNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPJnFz0AAAAAYVr6vwAAAAAUCCk9AAAAANo23j8AAAAApkFPuwAAAAAAweE/AAAAALsVwrwAAAAAZvXavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK32o7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB4o3+9AAAAAJCR578AAAAAPLtsvQAAAAAOlvE/AAAAACkFs70AAAAAcOjlPwAAAAD+M/c9AAAAAFVo278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbG8G1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+/bAPQAAAAA7Ufe/AAAAAEr6jj0AAAAAH8n+PwAAAACORrA9AAAAAFHMAEAAAAAAuG72PQAAAAC7Aea/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ3fOF23azyMAWyUTegDjAF0lEdAqxF0iD/VAnV9lChoBkdAmsTNEXtSh2gHTegDaAhHQKsS/p22Xsx1fZQoaAZHQJqhPPdEb5xoB03oA2gIR0CrE1lZHNHIdX2UKGgGR0Cby0R8MNMHaAdN6ANoCEdAqxmNbPhQ33V9lChoBkdAmnHNYW+GoWgHTegDaAhHQKsfEDRtxdZ1fZQoaAZHQJuieGYa5wxoB03oA2gIR0CrIXLAxi5NdX2UKGgGR0Ca6qWVu76IaAdN6ANoCEdAqyH0xqO94HV9lChoBkdAnkqEUCaJAWgHTegDaAhHQKspJXSSeRR1fZQoaAZHQJtVqicoYvZoB03oA2gIR0CrLWgoPTXrdX2UKGgGR0Cb15zN2TxHaAdN6ANoCEdAqy79qrR0EHV9lChoBkdAnGwOUILPU2gHTegDaAhHQKsvThddE9d1fZQoaAZHQJhkxl05lvtoB03oA2gIR0CrNZLqt5lfdX2UKGgGR0CaRH3np0OmaAdN6ANoCEdAqzpD0z0pVnV9lChoBkdAmfP5Mcp9Z2gHTegDaAhHQKs8gB9Tgl51fZQoaAZHQJbL6NjslcBoB03oA2gIR0CrPPiTt9hJdX2UKGgGR0CZW6bpu/DcaAdN6ANoCEdAq0VMF+uvEHV9lChoBkdAl1PAsoUi6mgHTegDaAhHQKtJWW5Yoy91fZQoaAZHQJflG4axX4loB03oA2gIR0CrSuEoWpIddX2UKGgGR0CX32DfWMCLaAdN6ANoCEdAq0s5nJ1aGHV9lChoBkdAl7cV7IDHO2gHTegDaAhHQKtTpf2saKl1fZQoaAZHQJqS2Nn5BTpoB03oA2gIR0CrWcx0lqrSdX2UKGgGR0CauioP07KaaAdN6ANoCEdAq1whKL8763V9lChoBkdAmxvfjfek6GgHTegDaAhHQKtcoBqbjLl1fZQoaAZHQJrI4BQvYe1oB03oA2gIR0CrZF748EFGdX2UKGgGR0Cb0ImE4//vaAdN6ANoCEdAq2if/rB0p3V9lChoBkdAmemNZFG5MGgHTegDaAhHQKtqKsbNr0t1fZQoaAZHQJkrIfT1CgNoB03oA2gIR0CranxQaaTfdX2UKGgGR0CaQEE+gUUPaAdN6ANoCEdAq3DIQ+UyHnV9lChoBkdAm8W3Gn4wiGgHTegDaAhHQKt0z8dgfEJ1fZQoaAZHQJoGvCMxXXBoB03oA2gIR0CrdvPeHi3odX2UKGgGR0CYH5VktmL+aAdN6ANoCEdAq3dzviLl3nV9lChoBkdAmtFP7rLQomgHTegDaAhHQKuAf1AZ88d1fZQoaAZHQJpa+attALRoB03oA2gIR0CrhHhaTwDvdX2UKGgGR0CbqxLX+VC5aAdN6ANoCEdAq4YBllK9PHV9lChoBkdAmyosvIwM6WgHTegDaAhHQKuGVnaFmFt1fZQoaAZHQJwWRcZ9/jNoB03oA2gIR0CrjHsm4RVZdX2UKGgGR0CdF772+PBBaAdN6ANoCEdAq5CTyrgfl3V9lChoBkdAnOjau4gA62gHTegDaAhHQKuSHR7Z39t1fZQoaAZHQJ1Re3BpHqhoB03oA2gIR0Crkm2WIGhVdX2UKGgGR0CcGSyY5T60aAdN6ANoCEdAq5tChWYF7nV9lChoBkdAm/SOMhouf2gHTegDaAhHQKugGRyOrAB1fZQoaAZHQJue9wo9cKRoB03oA2gIR0CroapBgNPQdX2UKGgGR0Cb4Z938n/laAdN6ANoCEdAq6H/c1wYL3V9lChoBkdAnCHrsrupj2gHTegDaAhHQKuobRMN+b51fZQoaAZHQJyRSXw9aEBoB03oA2gIR0CrrF36qKgqdX2UKGgGR0CbTuRFZxJeaAdN6ANoCEdAq63xzBAOa3V9lChoBkdAmy9gCKaXr2gHTegDaAhHQKuuQ5sj3VV1fZQoaAZHQJnVI3vQWvdoB03oA2gIR0CrtcvfCQ9zdX2UKGgGR0Cc/Wz0HyEtaAdN6ANoCEdAq7v4nSfDk3V9lChoBkdAnQQayv9tM2gHTegDaAhHQKu9gK1og3d1fZQoaAZHQJv56fYjB2xoB03oA2gIR0CrvdWU0Nz9dX2UKGgGR0CblJCMxXXAaAdN6ANoCEdAq8QaaqjrRnV9lChoBkdAnE09jG1hLGgHTegDaAhHQKvICjbi6xx1fZQoaAZHQJyPBQk5ZKZoB03oA2gIR0CryaBMzuWsdX2UKGgGR0CcrGWUKRdQaAdN6ANoCEdAq8nxz3h4uHV9lChoBkdAmrWPhIe5nWgHTegDaAhHQKvQRL6k6911fZQoaAZHQJzbRZowmE5oB03oA2gIR0Cr1i/336AOdX2UKGgGR0CfcC0oScslaAdN6ANoCEdAq9iQsoUi6nV9lChoBkdAneYoe1a4c2gHTegDaAhHQKvZEj+rELp1fZQoaAZHQJ3NqDqW1MNoB03oA2gIR0Cr34j0lJHzdX2UKGgGR0CeW3nV5KODaAdN6ANoCEdAq+Ohc5bQkXV9lChoBkdAnIvBiobXH2gHTegDaAhHQKvlLbwjMV11fZQoaAZHQJ4nvVUdaMdoB03oA2gIR0Cr5Xy00FbFdX2UKGgGR0CeV4VopQUIaAdN6ANoCEdAq+uw+6iCa3V9lChoBkdAoAPPYODraGgHTegDaAhHQKvwdph4MWp1fZQoaAZHQJ7OpG0/nnxoB03oA2gIR0Cr8tKHoHLSdX2UKGgGR0CexmYYzi0faAdN6ANoCEdAq/NVrl/6PHV9lChoBkdAnaChMewLVmgHTegDaAhHQKv+OI7eVLV1fZQoaAZHQJs6BZRsMy9oB03oA2gIR0CsAwHJtBOYdX2UKGgGR0Ca8RzsyBTXaAdN6ANoCEdArASIZdfLLnV9lChoBkdAmyEcGs3hoGgHTegDaAhHQKwE3U1AJLN1fZQoaAZHQJ4J739JjDtoB03oA2gIR0CsCwx3NcGDdX2UKGgGR0CeqaWfK6nSaAdN6ANoCEdArA/r15B1LnV9lChoBkdAoBlkDSw4bWgHTegDaAhHQKwSN4QBgeB1fZQoaAZHQJyhJzCDVYpoB03oA2gIR0CsErgqur6tdX2UKGgGR0CeAG25hBqsaAdN6ANoCEdArBrSEi+tbXV9lChoBkdAnRCVbzK9wmgHTegDaAhHQKwe/7Uoa1l1fZQoaAZHQJtC2Awwj+toB03oA2gIR0CsILwCCBf8dX2UKGgGR0CeQ9eaKDTSaAdN6ANoCEdArCESOWBz3nV9lChoBkdAnZF3JLdvbWgHTegDaAhHQKwnZsoDxLF1fZQoaAZHQJ28J+uvECNoB03oA2gIR0CsK3f5+H8CdX2UKGgGR0CdJ7U4JeE7aAdN6ANoCEdArC2P5ckdFXV9lChoBkdAnrNDyOJcgWgHTegDaAhHQKwuDHTZxrB1fZQoaAZHQJ57+gFotcxoB03oA2gIR0CsNvemNzbOdX2UKGgGR0Cd2WTLns9kaAdN6ANoCEdArDr2zY287XV9lChoBkdAnAxgFgUlA2gHTegDaAhHQKw8fbmEGqx1fZQoaAZHQJ5GNzijtXxoB03oA2gIR0CsPNERSP2gdX2UKGgGR0CdfVWcjJMhaAdN6ANoCEdArEMVTJhfB3V9lChoBkdAm3ljmr8zh2gHTegDaAhHQKxHGu0TlDF1fZQoaAZHQJm8baSLZSNoB03oA2gIR0CsSMQZ4wAVdX2UKGgGR0CakAA0sOG1aAdN6ANoCEdArEkXc580DXV9lChoBkdAm8NQ2dd3S2gHTegDaAhHQKxSA0ngHeJ1fZQoaAZHQJvomUnogV5oB03oA2gIR0CsVqZzHS4OdX2UKGgGR0CeJzbL2YfGaAdN6ANoCEdArFg7r1M/QnV9lChoBkdAnLKonBtUGWgHTegDaAhHQKxYjyCnP3V1fZQoaAZHQJzTHdGiHqNoB03oA2gIR0CsXvnDiwSrdX2UKGgGR0CeZR/+85CGaAdN6ANoCEdArGMURSP2f3V9lChoBkdAn/70aqCHymgHTegDaAhHQKxkobMHKOl1fZQoaAZHQJ/4P7qIJqtoB03oA2gIR0CsZPqBd2PldX2UKGgGR0Cc8xVkc0cfaAdN6ANoCEdArGy1ERaouXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}