Update README.md
Browse files
README.md
CHANGED
@@ -1,259 +1,19 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
10 |
-
|
11 |
-
## Model Details
|
12 |
-
|
13 |
-
### Model Description
|
14 |
-
|
15 |
-
<!-- Provide a longer summary of what this model is. -->
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
- **Developed by:** [More Information Needed]
|
20 |
-
- **Funded by [optional]:** [More Information Needed]
|
21 |
-
- **Shared by [optional]:** [More Information Needed]
|
22 |
-
- **Model type:** [More Information Needed]
|
23 |
-
- **Language(s) (NLP):** [More Information Needed]
|
24 |
-
- **License:** [More Information Needed]
|
25 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
-
|
27 |
-
### Model Sources [optional]
|
28 |
-
|
29 |
-
<!-- Provide the basic links for the model. -->
|
30 |
-
|
31 |
-
- **Repository:** [More Information Needed]
|
32 |
-
- **Paper [optional]:** [More Information Needed]
|
33 |
-
- **Demo [optional]:** [More Information Needed]
|
34 |
-
|
35 |
-
## Uses
|
36 |
-
|
37 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
-
|
39 |
-
### Direct Use
|
40 |
-
|
41 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
-
```python
|
43 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
-
import torch
|
45 |
-
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained('InstructPLM/MPNN-ProGen2-xlarge-CATH42', trust_remote_code=True)
|
47 |
-
model = AutoModelForCausalLM.from_pretrained('InstructPLM/MPNN-ProGen2-xlarge-CATH42', trust_remote_code=True)
|
48 |
-
|
49 |
-
model.cuda().eval()
|
50 |
-
model.requires_grad_(False)
|
51 |
-
|
52 |
-
batch = tokenizer('Fast-PETase.pyd|1MQTNPYARGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPESRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWHSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSQNAKQFLEIKGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTAVSDFRTANCS2',return_tensors='pt').to(device=model.device)
|
53 |
-
|
54 |
-
labels = batch.input_ids.masked_fill((1-batch.attention_mask).bool(), -100)
|
55 |
-
labels[:, :tokenizer.n_queries+1] = -100
|
56 |
-
|
57 |
-
batch["labels"] = labels
|
58 |
-
|
59 |
-
|
60 |
-
with torch.no_grad():
|
61 |
-
with torch.cuda.amp.autocast(dtype=torch.float16):
|
62 |
-
output = model(**batch)
|
63 |
-
|
64 |
-
print(output.loss.item())
|
65 |
-
|
66 |
-
batch = tokenizer('Fast-PETase.pyd|1',return_tensors='pt').to(device=model.device)
|
67 |
-
|
68 |
-
|
69 |
-
tokens_batch = model.generate(
|
70 |
-
**batch,
|
71 |
-
do_sample=True,
|
72 |
-
temperature=0.8,
|
73 |
-
max_length=512+tokenizer.n_queries,
|
74 |
-
min_new_tokens=5,
|
75 |
-
top_p=0.9,
|
76 |
-
num_return_sequences=5,
|
77 |
-
pad_token_id=0,
|
78 |
-
repetition_penalty=1.0,
|
79 |
-
bad_words_ids=[[3]]
|
80 |
-
)
|
81 |
-
|
82 |
-
texts = tokenizer.batch_decode(tokens_batch)
|
83 |
-
|
84 |
-
def truncate_seq(text):
|
85 |
-
bos = text.find('1')
|
86 |
-
eos = text.find('2')
|
87 |
-
if eos > bos and bos >= 0:
|
88 |
-
return text[bos+1:eos]
|
89 |
-
else:
|
90 |
-
return text[bos+1:]
|
91 |
-
print([truncate_seq(t) for t in texts])
|
92 |
-
|
93 |
-
# Ref. Seq
|
94 |
-
# 'MQTNPYARGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPESRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWHSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSQNAKQFLEIKGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTAVSDFRTANCS'
|
95 |
-
# Designed seq:
|
96 |
-
# 'METNPFHRGPDPTCASLEAGAGPFNVQSFRVDRPLGFGAGTVFYPTDAGGQVPAIAIAPGFTQTQSSVMWYGPRLASHGFVVIVIDTISTFDNPDSRSAQLLAALDQVANLNSNASSPIYGKVDTTRQAVMGHSMGGGGSLISAMNNPSLKAAAPMAPWHVSTNFSAVQVPTFIIGAENDTIAPVASHSIPFYNSIPSSLPKAYMELAGASHLAPNSSNPTIAKYSISWLKRFVDNDTRYEQFLCPAPTSTALISEYRDTCPY',
|
97 |
-
# 'EETNPYSKGPDPTAASLEASAGPFTVQSFSVARPLGFGAGTVYYPTDAGGKVGAIAVVPGYTDTQGSIRWWGPRLASHGFVVMTIDTISSYDQPDSRSAQLMAALDQLANLNSTSSSPIYNKVDTTRQAVMGHSMGGGGSLISAMNNPNLKAAIPMAPWHSSTNFSSVKVPTMILGAERDTVAPVSSHAEPFYNSLPSSTPKAYLELKGASHFFPNTTNTPTFAKSVLAWLKRFVDNDTRYEQFLCPGPTSTDLTDYRNTCPY',
|
98 |
-
# 'SETNPYIKGPDPTAASLEASAGAFTVQSFTVSRPTGFGAGTVYYPTDAGGRVGAIAIVPGYTATQSSIKWWGPRLASHGFVVMTIDTNSTYDQPDSRANQLMAALDQLTNLNSTRSSPIYGKVDTTRQGVMGHSMGGGGSLIAAQDNPNLKAAIPLAPWHSSSNFSSVTVPTLIIGAQNDTVAPVSSHSIPFYTSLPSSLDKAYLELNGASHFAPNSSNTTIAKYSISWLKRFIDNDTRYEQFLCPPPSGSALISEYRNTCPY',
|
99 |
-
# 'EETWPYHRGPDPTAASLEASAGPFTVQSFTVARPLGFGAGTVYYPTDAGGRVGAVAVVPGYTQTQSAIRWWGPRLASHGFVVMTIDTISTFDQPDSRSAQLLAALDQLAVLNSTRSSPIYNKVDTTRQGVMGHSMGGGGSLISAMNNPSLKAAVPLAPWHASTNFSNVQVPTLIIGASDDTTASVTTHSIPFYNSIPSSVPKAYLELQGQSHFCPNTSNTTIAKYSISWLKRFIDNDTRYDQFLCPPPNGSAISDYRSTCPH',
|
100 |
-
# 'METNPFIRGPNPTAASLEASAGPFQVSSFSVARPVGFGAGTVYYPTDAGGQVPAIAIAPGFTQTQASVKWYGPRLASHGFVVIVIDTNSTLDNPDSRSAQLLAALDQVSTLNSSSSSPIYGKVDTTRQGVMGHSMGGGGSLISAQNNPALKAAIPLAPWHVSTDFSGVTVPTLIIGAENDTVAPVGTHAEPFYNSIPSSTPKAYLELNNASHFAPNTSNTTIAKYSIAWLKRFVDNDTRYDQFLCPAPNGNAIQDYRDTCPH'
|
101 |
-
#
|
102 |
-
```
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
-
|
106 |
-
### Downstream Use [optional]
|
107 |
-
|
108 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
-
|
112 |
-
### Out-of-Scope Use
|
113 |
-
|
114 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
-
|
118 |
-
## Bias, Risks, and Limitations
|
119 |
-
|
120 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
### Recommendations
|
125 |
-
|
126 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
127 |
-
|
128 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
129 |
-
|
130 |
-
## How to Get Started with the Model
|
131 |
-
|
132 |
-
Use the code below to get started with the model.
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
## Training Details
|
137 |
-
|
138 |
-
### Training Data
|
139 |
-
|
140 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
### Training Procedure
|
145 |
-
|
146 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
147 |
-
|
148 |
-
#### Preprocessing [optional]
|
149 |
-
|
150 |
-
[More Information Needed]
|
151 |
-
|
152 |
-
|
153 |
-
#### Training Hyperparameters
|
154 |
-
|
155 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
156 |
-
|
157 |
-
#### Speeds, Sizes, Times [optional]
|
158 |
-
|
159 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
## Evaluation
|
164 |
-
|
165 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
166 |
-
|
167 |
-
### Testing Data, Factors & Metrics
|
168 |
-
|
169 |
-
#### Testing Data
|
170 |
-
|
171 |
-
<!-- This should link to a Dataset Card if possible. -->
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
#### Factors
|
176 |
-
|
177 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
#### Metrics
|
182 |
-
|
183 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
### Results
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
#### Summary
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
## Model Examination [optional]
|
196 |
-
|
197 |
-
<!-- Relevant interpretability work for the model goes here -->
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Environmental Impact
|
202 |
-
|
203 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
204 |
-
|
205 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
206 |
-
|
207 |
-
- **Hardware Type:** [More Information Needed]
|
208 |
-
- **Hours used:** [More Information Needed]
|
209 |
-
- **Cloud Provider:** [More Information Needed]
|
210 |
-
- **Compute Region:** [More Information Needed]
|
211 |
-
- **Carbon Emitted:** [More Information Needed]
|
212 |
-
|
213 |
-
## Technical Specifications [optional]
|
214 |
-
|
215 |
-
### Model Architecture and Objective
|
216 |
-
|
217 |
-
[More Information Needed]
|
218 |
-
|
219 |
-
### Compute Infrastructure
|
220 |
-
|
221 |
-
[More Information Needed]
|
222 |
-
|
223 |
-
#### Hardware
|
224 |
-
|
225 |
-
[More Information Needed]
|
226 |
-
|
227 |
-
#### Software
|
228 |
-
|
229 |
-
[More Information Needed]
|
230 |
-
|
231 |
-
## Citation [optional]
|
232 |
-
|
233 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
234 |
-
|
235 |
-
**BibTeX:**
|
236 |
-
|
237 |
-
[More Information Needed]
|
238 |
-
|
239 |
-
**APA:**
|
240 |
-
|
241 |
-
[More Information Needed]
|
242 |
-
|
243 |
-
## Glossary [optional]
|
244 |
-
|
245 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
246 |
-
|
247 |
-
[More Information Needed]
|
248 |
-
|
249 |
-
## More Information [optional]
|
250 |
-
|
251 |
-
[More Information Needed]
|
252 |
-
|
253 |
-
## Model Card Authors [optional]
|
254 |
-
|
255 |
-
[More Information Needed]
|
256 |
-
|
257 |
-
## Model Card Contact
|
258 |
-
|
259 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- biology
|
6 |
---
|
7 |
|
8 |
+
# InstrcutPLM
|
9 |
+
InstructPLM is a state-of-the-art protein design model based on [ProGen2](https://www.cell.com/cell-systems/abstract/S2405-4712(23)00272-7)
|
10 |
+
and [ProteinMPNN](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997061/)
|
11 |
+
and trained on [CATH 4.2](https://www.cathdb.info/) dataset.
|
12 |
+
It can design protein sequences that accurately conform to specified backbone structures.
|
13 |
+
<p align="center">
|
14 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62a8397d839eeb3ef16a7566/1NRk65EImgBAFgvh8HJrA.png" alt="drawing" width="200"/>
|
15 |
+
</p>
|
16 |
+
Please visit our [repo](https://github.com/Eikor/InstructPLM) and [paper](https://github.com/Eikor/InstructPLM) for more information.
|
17 |
|
18 |
+
Please consider cite our paper and repo:
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|