Upload inference_example.ipynb
Browse files- inference_example.ipynb +9 -1
inference_example.ipynb
CHANGED
@@ -52,7 +52,15 @@
|
|
52 |
" torch.Tensor: One-hot encoded\n",
|
53 |
" - If `sequences` is just one sequence (str), output shape is (seq_len, 4), seq_len being the length of a sequence\n",
|
54 |
" - If `sequences` is a list of sequences, output shape is (num_sequences, seq_len, 4)\n",
|
55 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
" \"\"\"\n",
|
57 |
" one_hot_map = {\n",
|
58 |
" 'a': torch.tensor([1., 0., 0., 0.]),\n",
|
|
|
52 |
" torch.Tensor: One-hot encoded\n",
|
53 |
" - If `sequences` is just one sequence (str), output shape is (seq_len, 4), seq_len being the length of a sequence\n",
|
54 |
" - If `sequences` is a list of sequences, output shape is (num_sequences, seq_len, 4)\n",
|
55 |
+
" \n",
|
56 |
+
" Example:\n",
|
57 |
+
" >>> sequences = [\"AC\", \"GT\"]\n",
|
58 |
+
" >>> encode_sequences(sequences)\n",
|
59 |
+
" tensor([[[1., 0., 0., 0.],\n",
|
60 |
+
" [0., 1., 0., 0.]],\n",
|
61 |
+
"\n",
|
62 |
+
" [[0., 0., 1., 0.],\n",
|
63 |
+
" [0., 0., 0., 1.]]])\n",
|
64 |
" \"\"\"\n",
|
65 |
" one_hot_map = {\n",
|
66 |
" 'a': torch.tensor([1., 0., 0., 0.]),\n",
|