File size: 8,790 Bytes
95d75ca 669aaf5 95d75ca 669aaf5 95d75ca be84f90 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca 669aaf5 95d75ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from typing import Any, Dict, List
import borzoi_pytorch
import torch
import torch.nn as nn
from einops import rearrange
from torch import einsum
from transformers import PretrainedConfig, PreTrainedModel
from genomics_research.segmentnt.porting_to_pytorch.layers.segmentation_head import (
TorchUNetHead,
)
FEATURES = [
"protein_coding_gene",
"lncRNA",
"exon",
"intron",
"splice_donor",
"splice_acceptor",
"5UTR",
"3UTR",
"CTCF-bound",
"polyA_signal",
"enhancer_Tissue_specific",
"enhancer_Tissue_invariant",
"promoter_Tissue_specific",
"promoter_Tissue_invariant",
]
class SegmentBorzoiConfig(PretrainedConfig):
model_type = "segment_borzoi"
def __init__(
self,
features: List[str] = FEATURES,
embed_dim: int = 1536,
dim_divisible_by: int = 32,
attention_dim_key: int = 64,
num_attention_heads: int = 8,
num_rel_pos_features: int = 32,
**kwargs: Dict[str, Any],
):
self.features = features
self.embed_dim = embed_dim
self.dim_divisible_by = dim_divisible_by
self.attention_dim_key = attention_dim_key
self.num_attention_heads = num_attention_heads
self.num_rel_pos_features = num_rel_pos_features
super().__init__(**kwargs)
class SegmentBorzoi(PreTrainedModel):
config_class = SegmentBorzoiConfig
def __init__(self, config: SegmentBorzoiConfig):
super().__init__(config=config)
borzoi = borzoi_pytorch.Borzoi.from_pretrained("johahi/borzoi-replicate-0")
# Stem
self.stem = borzoi.conv_dna
# Conv tower
self.res_tower = borzoi.res_tower
self.unet1 = borzoi.unet1
self._max_pool = borzoi._max_pool
# Transformer tower
self.transformer = borzoi.transformer
# UNet convolution layers
self.horizontal_conv1 = borzoi.horizontal_conv1
self.horizontal_conv0 = borzoi.horizontal_conv0
self.upsampling_unet1 = borzoi.upsampling_unet1
self.upsampling_unet0 = borzoi.upsampling_unet0
self.separable1 = borzoi.separable1
self.separable0 = borzoi.separable0
# Target length crop
self.crop = borzoi.crop
# Final convolution block
self.final_joined_convs = borzoi.final_joined_convs
self.unet_head = TorchUNetHead(
features=config.features,
embed_dimension=config.embed_dim,
nucl_per_token=config.dim_divisible_by,
remove_cls_token=False,
)
# Correct transformer
for layer in self.transformer:
layer[0].fn[1] = BorzoiAttentionLayer( # type: ignore
config.embed_dim,
heads=config.num_attention_heads,
dim_key=config.attention_dim_key,
dim_value=config.embed_dim // config.num_attention_heads,
dropout=0.05,
pos_dropout=0.01,
num_rel_pos_features=config.num_rel_pos_features,
)
# Correct conv layer in downsample block
self.unet_head.unet.downsample_blocks[0].conv_layers[0] = nn.Conv1d(
in_channels=1920, out_channels=1536, kernel_size=3, stride=1, padding=1
)
# Correct bias in separable layers
self.separable1.conv_layer[1].bias = None
self.separable0.conv_layer[1].bias = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Stem
x = x.transpose(1, 2)
x = self.stem(x)
# Conv tower
x_unet0 = self.res_tower(x)
x_unet1 = self.unet1(x_unet0)
x = self._max_pool(x_unet1)
# Transformer tower
x = x.permute(0, 2, 1)
x = self.transformer(x)
x = x.permute(0, 2, 1)
# UNet conv
x_unet1 = self.horizontal_conv1(x_unet1)
x_unet0 = self.horizontal_conv0(x_unet0)
# UNet upsampling and separable convolutions
x = self.upsampling_unet1(x)
x += x_unet1
x = self.separable1(x)
x = self.upsampling_unet0(x)
x += x_unet0
x = self.separable0(x)
# Target length crop
x = self.crop(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
# Final convolution block
x = self.final_joined_convs(x)
x = self.unet_head(x)
return x
# Define custom attention layer for PyTorch model because Attention layer from the
# imported model is not the same (the positional embeddings are not the same)
def _prepend_dims(tensor: torch.Tensor, num_dims: int) -> torch.Tensor:
"""Prepends dimensions to match the required shape."""
for _ in range(num_dims - tensor.dim()):
tensor = tensor.unsqueeze(0)
return tensor
def get_positional_features_central_mask_borzoi(
positions: torch.Tensor, feature_size: int, seq_length: int
) -> torch.Tensor:
"""Positional features using a central mask (allow only central features)."""
pow_rate = torch.exp(torch.log(torch.tensor(seq_length + 1.0)) / feature_size)
center_widths = torch.pow(pow_rate, torch.arange(1, feature_size + 1).float()) - 1
center_widths = _prepend_dims(center_widths, positions.ndim)
outputs = (center_widths > torch.abs(positions).unsqueeze(-1)).float()
return outputs
def get_positional_embed_borzoi(seq_len: int, feature_size: int) -> torch.Tensor:
"""
Compute positional embedding for Borzoi. Note that it is different than the one
used in Enformer.
"""
distances = torch.arange(-seq_len + 1, seq_len)
num_components = 2
if (feature_size % num_components) != 0:
raise ValueError(
f"feature size is not divisible by number of components ({num_components})"
)
num_basis_per_class = feature_size // num_components
embeddings = []
embeddings.append(
get_positional_features_central_mask_borzoi(
distances, num_basis_per_class, seq_len
)
)
embeddings = torch.cat(embeddings, dim=-1)
embeddings = torch.cat(
(embeddings, torch.sign(distances).unsqueeze(-1) * embeddings), dim=-1
)
return embeddings
def relative_shift(x: torch.Tensor) -> torch.Tensor:
to_pad = torch.zeros_like(x[..., :1])
x = torch.cat((to_pad, x), dim=-1)
_, h, t1, t2 = x.shape
x = x.reshape(-1, h, t2, t1) # noqa: FKA100
x = x[:, :, 1:, :]
x = x.reshape(-1, h, t1, t2 - 1) # noqa: FKA100
return x[..., : ((t2 + 1) // 2)]
class BorzoiAttentionLayer(nn.Module):
def __init__( # type: ignore
self,
dim,
*,
num_rel_pos_features,
heads=8,
dim_key=64,
dim_value=64,
dropout=0.0,
pos_dropout=0.0,
) -> None:
super().__init__()
self.scale = dim_key**-0.5
self.heads = heads
self.to_q = nn.Linear(dim, dim_key * heads, bias=False)
self.to_k = nn.Linear(dim, dim_key * heads, bias=False)
self.to_v = nn.Linear(dim, dim_value * heads, bias=False)
self.to_out = nn.Linear(dim_value * heads, dim)
nn.init.zeros_(self.to_out.weight)
nn.init.zeros_(self.to_out.bias)
self.num_rel_pos_features = num_rel_pos_features
self.to_rel_k = nn.Linear(num_rel_pos_features, dim_key * heads, bias=False)
self.rel_content_bias = nn.Parameter(
torch.randn(1, heads, 1, dim_key) # noqa: FKA100
)
self.rel_pos_bias = nn.Parameter(
torch.randn(1, heads, 1, dim_key) # noqa: FKA100
)
# dropouts
self.pos_dropout = nn.Dropout(pos_dropout)
self.attn_dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
n, h = x.shape[-2], self.heads
q = self.to_q(x)
k = self.to_k(x)
v = self.to_v(x)
q, k, v = map( # noqa
lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), # type: ignore
(q, k, v),
)
q = q * self.scale
content_logits = einsum(
"b h i d, b h j d -> b h i j", q + self.rel_content_bias, k
)
positions = get_positional_embed_borzoi(n, self.num_rel_pos_features)
positions = self.pos_dropout(positions)
rel_k = self.to_rel_k(positions)
rel_k = rearrange(rel_k, "n (h d) -> h n d", h=h)
rel_logits = einsum("b h i d, h j d -> b h i j", q + self.rel_pos_bias, rel_k)
rel_logits = relative_shift(rel_logits)
logits = content_logits + rel_logits
attn = logits.softmax(dim=-1)
attn = self.attn_dropout(attn)
out = einsum("b h i j, b h j d -> b h i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
|