File size: 8,790 Bytes
95d75ca
 
 
 
 
 
 
 
 
669aaf5
 
 
95d75ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669aaf5
95d75ca
 
 
 
 
 
 
 
 
be84f90
 
 
 
 
95d75ca
 
 
 
669aaf5
95d75ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669aaf5
95d75ca
669aaf5
95d75ca
 
 
 
669aaf5
95d75ca
 
 
 
 
 
 
 
 
669aaf5
95d75ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669aaf5
 
 
 
 
 
95d75ca
 
 
 
 
 
669aaf5
95d75ca
 
 
 
 
 
669aaf5
 
 
 
95d75ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from typing import Any, Dict, List

import borzoi_pytorch
import torch
import torch.nn as nn
from einops import rearrange
from torch import einsum
from transformers import PretrainedConfig, PreTrainedModel

from genomics_research.segmentnt.porting_to_pytorch.layers.segmentation_head import (
    TorchUNetHead,
)

FEATURES = [
    "protein_coding_gene",
    "lncRNA",
    "exon",
    "intron",
    "splice_donor",
    "splice_acceptor",
    "5UTR",
    "3UTR",
    "CTCF-bound",
    "polyA_signal",
    "enhancer_Tissue_specific",
    "enhancer_Tissue_invariant",
    "promoter_Tissue_specific",
    "promoter_Tissue_invariant",
]


class SegmentBorzoiConfig(PretrainedConfig):
    model_type = "segment_borzoi"

    def __init__(
        self,
        features: List[str] = FEATURES,
        embed_dim: int = 1536,
        dim_divisible_by: int = 32,
        attention_dim_key: int = 64,
        num_attention_heads: int = 8,
        num_rel_pos_features: int = 32,
        **kwargs: Dict[str, Any],
    ):
        self.features = features
        self.embed_dim = embed_dim
        self.dim_divisible_by = dim_divisible_by
        self.attention_dim_key = attention_dim_key
        self.num_attention_heads = num_attention_heads
        self.num_rel_pos_features = num_rel_pos_features

        super().__init__(**kwargs)


class SegmentBorzoi(PreTrainedModel):
    config_class = SegmentBorzoiConfig

    def __init__(self, config: SegmentBorzoiConfig):
        super().__init__(config=config)
        borzoi = borzoi_pytorch.Borzoi.from_pretrained("johahi/borzoi-replicate-0")

        # Stem
        self.stem = borzoi.conv_dna

        # Conv tower
        self.res_tower = borzoi.res_tower
        self.unet1 = borzoi.unet1
        self._max_pool = borzoi._max_pool

        # Transformer tower
        self.transformer = borzoi.transformer

        # UNet convolution layers
        self.horizontal_conv1 = borzoi.horizontal_conv1
        self.horizontal_conv0 = borzoi.horizontal_conv0
        self.upsampling_unet1 = borzoi.upsampling_unet1
        self.upsampling_unet0 = borzoi.upsampling_unet0
        self.separable1 = borzoi.separable1
        self.separable0 = borzoi.separable0

        # Target length crop
        self.crop = borzoi.crop

        # Final convolution block
        self.final_joined_convs = borzoi.final_joined_convs

        self.unet_head = TorchUNetHead(
            features=config.features,
            embed_dimension=config.embed_dim,
            nucl_per_token=config.dim_divisible_by,
            remove_cls_token=False,
        )

        # Correct transformer
        for layer in self.transformer:
            layer[0].fn[1] = BorzoiAttentionLayer(  # type: ignore
                config.embed_dim,
                heads=config.num_attention_heads,
                dim_key=config.attention_dim_key,
                dim_value=config.embed_dim // config.num_attention_heads,
                dropout=0.05,
                pos_dropout=0.01,
                num_rel_pos_features=config.num_rel_pos_features,
            )

        # Correct conv layer in downsample block
        self.unet_head.unet.downsample_blocks[0].conv_layers[0] = nn.Conv1d(
            in_channels=1920, out_channels=1536, kernel_size=3, stride=1, padding=1
        )

        # Correct bias in separable layers
        self.separable1.conv_layer[1].bias = None
        self.separable0.conv_layer[1].bias = None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Stem
        x = x.transpose(1, 2)
        x = self.stem(x)

        # Conv tower
        x_unet0 = self.res_tower(x)
        x_unet1 = self.unet1(x_unet0)
        x = self._max_pool(x_unet1)

        # Transformer tower
        x = x.permute(0, 2, 1)
        x = self.transformer(x)
        x = x.permute(0, 2, 1)

        # UNet conv
        x_unet1 = self.horizontal_conv1(x_unet1)
        x_unet0 = self.horizontal_conv0(x_unet0)

        # UNet upsampling and separable convolutions
        x = self.upsampling_unet1(x)
        x += x_unet1
        x = self.separable1(x)
        x = self.upsampling_unet0(x)
        x += x_unet0
        x = self.separable0(x)

        # Target length crop
        x = self.crop(x.permute(0, 2, 1))
        x = x.permute(0, 2, 1)

        # Final convolution block
        x = self.final_joined_convs(x)

        x = self.unet_head(x)

        return x


# Define custom attention layer for PyTorch model because Attention layer from the
# imported model is not the same (the positional embeddings are not the same)
def _prepend_dims(tensor: torch.Tensor, num_dims: int) -> torch.Tensor:
    """Prepends dimensions to match the required shape."""
    for _ in range(num_dims - tensor.dim()):
        tensor = tensor.unsqueeze(0)
    return tensor


def get_positional_features_central_mask_borzoi(
    positions: torch.Tensor, feature_size: int, seq_length: int
) -> torch.Tensor:
    """Positional features using a central mask (allow only central features)."""
    pow_rate = torch.exp(torch.log(torch.tensor(seq_length + 1.0)) / feature_size)
    center_widths = torch.pow(pow_rate, torch.arange(1, feature_size + 1).float()) - 1
    center_widths = _prepend_dims(center_widths, positions.ndim)
    outputs = (center_widths > torch.abs(positions).unsqueeze(-1)).float()
    return outputs


def get_positional_embed_borzoi(seq_len: int, feature_size: int) -> torch.Tensor:
    """
    Compute positional embedding for Borzoi. Note that it is different than the one
    used in Enformer.
    """
    distances = torch.arange(-seq_len + 1, seq_len)

    num_components = 2

    if (feature_size % num_components) != 0:
        raise ValueError(
            f"feature size is not divisible by number of components ({num_components})"
        )

    num_basis_per_class = feature_size // num_components

    embeddings = []

    embeddings.append(
        get_positional_features_central_mask_borzoi(
            distances, num_basis_per_class, seq_len
        )
    )

    embeddings = torch.cat(embeddings, dim=-1)
    embeddings = torch.cat(
        (embeddings, torch.sign(distances).unsqueeze(-1) * embeddings), dim=-1
    )
    return embeddings


def relative_shift(x: torch.Tensor) -> torch.Tensor:
    to_pad = torch.zeros_like(x[..., :1])
    x = torch.cat((to_pad, x), dim=-1)
    _, h, t1, t2 = x.shape
    x = x.reshape(-1, h, t2, t1)  # noqa: FKA100
    x = x[:, :, 1:, :]
    x = x.reshape(-1, h, t1, t2 - 1)  # noqa: FKA100
    return x[..., : ((t2 + 1) // 2)]


class BorzoiAttentionLayer(nn.Module):
    def __init__(  # type: ignore
        self,
        dim,
        *,
        num_rel_pos_features,
        heads=8,
        dim_key=64,
        dim_value=64,
        dropout=0.0,
        pos_dropout=0.0,
    ) -> None:
        super().__init__()
        self.scale = dim_key**-0.5
        self.heads = heads

        self.to_q = nn.Linear(dim, dim_key * heads, bias=False)
        self.to_k = nn.Linear(dim, dim_key * heads, bias=False)
        self.to_v = nn.Linear(dim, dim_value * heads, bias=False)

        self.to_out = nn.Linear(dim_value * heads, dim)
        nn.init.zeros_(self.to_out.weight)
        nn.init.zeros_(self.to_out.bias)

        self.num_rel_pos_features = num_rel_pos_features

        self.to_rel_k = nn.Linear(num_rel_pos_features, dim_key * heads, bias=False)
        self.rel_content_bias = nn.Parameter(
            torch.randn(1, heads, 1, dim_key)  # noqa: FKA100
        )
        self.rel_pos_bias = nn.Parameter(
            torch.randn(1, heads, 1, dim_key)  # noqa: FKA100
        )

        # dropouts

        self.pos_dropout = nn.Dropout(pos_dropout)
        self.attn_dropout = nn.Dropout(dropout)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        n, h = x.shape[-2], self.heads

        q = self.to_q(x)
        k = self.to_k(x)
        v = self.to_v(x)

        q, k, v = map(  # noqa
            lambda t: rearrange(t, "b n (h d) -> b h n d", h=h),  # type: ignore
            (q, k, v),
        )

        q = q * self.scale

        content_logits = einsum(
            "b h i d, b h j d -> b h i j", q + self.rel_content_bias, k
        )

        positions = get_positional_embed_borzoi(n, self.num_rel_pos_features)
        positions = self.pos_dropout(positions)
        rel_k = self.to_rel_k(positions)

        rel_k = rearrange(rel_k, "n (h d) -> h n d", h=h)
        rel_logits = einsum("b h i d, h j d -> b h i j", q + self.rel_pos_bias, rel_k)
        rel_logits = relative_shift(rel_logits)

        logits = content_logits + rel_logits
        attn = logits.softmax(dim=-1)
        attn = self.attn_dropout(attn)

        out = einsum("b h i j, b h j d -> b h i d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)