Upload sCT
Browse files- config.json +2 -2
- pytorch_sct.py +756 -0
config.json
CHANGED
|
@@ -6,8 +6,8 @@
|
|
| 6 |
"attention_heads": 16,
|
| 7 |
"attention_maps_to_save": [],
|
| 8 |
"auto_map": {
|
| 9 |
-
"AutoConfig": "
|
| 10 |
-
"AutoModel": "
|
| 11 |
},
|
| 12 |
"cell_len": 19968,
|
| 13 |
"embed_dim": 1024,
|
|
|
|
| 6 |
"attention_heads": 16,
|
| 7 |
"attention_maps_to_save": [],
|
| 8 |
"auto_map": {
|
| 9 |
+
"AutoConfig": "pytorch_sct.sCTConfig",
|
| 10 |
+
"AutoModel": "pytorch_sct.sCT"
|
| 11 |
},
|
| 12 |
"cell_len": 19968,
|
| 13 |
"embed_dim": 1024,
|
pytorch_sct.py
ADDED
|
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F # noqa: N812
|
| 9 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class GeLU(nn.Module):
|
| 13 |
+
def __init__(self) -> None:
|
| 14 |
+
"""
|
| 15 |
+
This is the gelu implementation from the original ESM repo.
|
| 16 |
+
Using F.gelu yields subtly wrong results.
|
| 17 |
+
"""
|
| 18 |
+
super().__init__()
|
| 19 |
+
|
| 20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class RotaryEmbeddingConfig:
|
| 26 |
+
"""
|
| 27 |
+
Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
|
| 28 |
+
to adapt the rotary embeddings to larger lengths than what was used for training.
|
| 29 |
+
One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
|
| 30 |
+
Args:
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
rescaling_factor: Optional[float]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 37 |
+
"""
|
| 38 |
+
Rotary position embeddings based on those in
|
| 39 |
+
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer).
|
| 40 |
+
Query and keys are transformed by rotation
|
| 41 |
+
matrices which depend on their relative positions.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfig):
|
| 45 |
+
super().__init__()
|
| 46 |
+
|
| 47 |
+
# Extract argument from the config
|
| 48 |
+
self.rescaling_factor = rotary_embedding_config.rescaling_factor
|
| 49 |
+
self.upper_freq = 10000
|
| 50 |
+
self.dim = dim
|
| 51 |
+
|
| 52 |
+
self._seq_len_cached = None
|
| 53 |
+
self._cos_cached = None
|
| 54 |
+
self._sin_cached = None
|
| 55 |
+
|
| 56 |
+
def _apply_rotary_pos_emb(
|
| 57 |
+
self,
|
| 58 |
+
heads: torch.Tensor,
|
| 59 |
+
cos: torch.Tensor,
|
| 60 |
+
sin: torch.Tensor,
|
| 61 |
+
) -> torch.Tensor:
|
| 62 |
+
""" """
|
| 63 |
+
x_first, x_second = (
|
| 64 |
+
heads[..., : heads.shape[-1] // 2],
|
| 65 |
+
heads[..., heads.shape[-1] // 2 :],
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
first_part = x_first * cos - x_second * sin
|
| 69 |
+
second_part = x_second * cos + x_first * sin
|
| 70 |
+
|
| 71 |
+
return torch.cat((first_part, second_part), dim=-1)
|
| 72 |
+
|
| 73 |
+
def _compute_cos_sin_tables(
|
| 74 |
+
self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2
|
| 75 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 76 |
+
seq_len = x.shape[seq_dimension]
|
| 77 |
+
# Reset the tables if the sequence length has changed,
|
| 78 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
| 79 |
+
self._seq_len_cached = seq_len
|
| 80 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq)
|
| 81 |
+
# freqs = torch.outer(t, inv_freq)
|
| 82 |
+
freqs = torch.einsum("i, j -> ij", t, inv_freq)
|
| 83 |
+
|
| 84 |
+
self._cos_cached = torch.cos(freqs)[None, :, None, :]
|
| 85 |
+
self._sin_cached = torch.sin(freqs)[None, :, None, :]
|
| 86 |
+
# emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 87 |
+
|
| 88 |
+
# self._cos_cached = emb.cos()[None, None, :, :]
|
| 89 |
+
# self._sin_cached = emb.sin()[None, None, :, :]
|
| 90 |
+
|
| 91 |
+
return self._cos_cached, self._sin_cached
|
| 92 |
+
|
| 93 |
+
def forward(
|
| 94 |
+
self, q: torch.Tensor, k: torch.Tensor
|
| 95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 96 |
+
if self.rescaling_factor is None:
|
| 97 |
+
inv_freq = 1.0 / (
|
| 98 |
+
self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
| 99 |
+
)
|
| 100 |
+
else:
|
| 101 |
+
updated_base = self.upper_freq * (
|
| 102 |
+
self.rescaling_factor ** (self.dim / (self.dim - 2))
|
| 103 |
+
)
|
| 104 |
+
inv_freq = 1.0 / (
|
| 105 |
+
updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
|
| 109 |
+
q,
|
| 110 |
+
inv_freq,
|
| 111 |
+
seq_dimension=-3,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return (
|
| 115 |
+
self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
| 116 |
+
self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class ResidualConvBlock(nn.Module):
|
| 121 |
+
"""
|
| 122 |
+
Conv Block with Residual connection.
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.conv_block = ConvBlock(
|
| 128 |
+
dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 132 |
+
y = self.conv_block(x)
|
| 133 |
+
return x.reshape(y.shape) + y
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class ConvBlock(nn.Module):
|
| 137 |
+
"""
|
| 138 |
+
Conv Block.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.conv = nn.Conv1d(
|
| 144 |
+
in_channels=dim_in,
|
| 145 |
+
out_channels=dim_out,
|
| 146 |
+
kernel_size=kernel_size,
|
| 147 |
+
padding="same",
|
| 148 |
+
)
|
| 149 |
+
self.layer_norm = nn.LayerNorm(seq_len, eps=1e-5)
|
| 150 |
+
|
| 151 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 152 |
+
x = self.layer_norm(x)
|
| 153 |
+
x = x.reshape(x.shape[0], x.shape[1], -1)
|
| 154 |
+
x = self.conv(x)
|
| 155 |
+
x = F.gelu(x, approximate="tanh")
|
| 156 |
+
return x
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
class ResidualDeConvBlock(nn.Module):
|
| 160 |
+
"""
|
| 161 |
+
Conv Block with Residual connection.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
def __init__(
|
| 165 |
+
self,
|
| 166 |
+
dim_in: int,
|
| 167 |
+
dim_out: int,
|
| 168 |
+
seq_len: int,
|
| 169 |
+
kernel_size: int = 1,
|
| 170 |
+
stride: int = 1,
|
| 171 |
+
):
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.deconv_block = DeConvBlock(
|
| 174 |
+
dim_in=dim_in,
|
| 175 |
+
dim_out=dim_out,
|
| 176 |
+
seq_len=seq_len,
|
| 177 |
+
kernel_size=kernel_size,
|
| 178 |
+
stride=stride,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 182 |
+
y = self.deconv_block(x)
|
| 183 |
+
return x.reshape(y.shape) + y
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class DeConvBlock(nn.Module):
|
| 187 |
+
"""
|
| 188 |
+
DeConv Block.
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
def __init__(
|
| 192 |
+
self,
|
| 193 |
+
dim_in: int,
|
| 194 |
+
dim_out: int,
|
| 195 |
+
seq_len: int,
|
| 196 |
+
kernel_size: int = 1,
|
| 197 |
+
stride: int = 1,
|
| 198 |
+
):
|
| 199 |
+
super().__init__()
|
| 200 |
+
self.deconv = nn.ConvTranspose1d(
|
| 201 |
+
in_channels=dim_in,
|
| 202 |
+
out_channels=dim_out,
|
| 203 |
+
kernel_size=kernel_size,
|
| 204 |
+
stride=stride,
|
| 205 |
+
padding=0,
|
| 206 |
+
)
|
| 207 |
+
self.layer_norm = nn.LayerNorm(seq_len)
|
| 208 |
+
self.kernel_size = kernel_size
|
| 209 |
+
|
| 210 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 211 |
+
x = self.layer_norm(x)
|
| 212 |
+
x = x.reshape(x.shape[0], x.shape[1], -1)
|
| 213 |
+
x = self.deconv(x)
|
| 214 |
+
if self.kernel_size == 5:
|
| 215 |
+
# handle the special case where haiku
|
| 216 |
+
# deconv removes padding automatically
|
| 217 |
+
x = x[:, :, 1:-2]
|
| 218 |
+
x = F.gelu(x, approximate="tanh")
|
| 219 |
+
return x
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class SpatialEncoding(nn.Module):
|
| 223 |
+
"""
|
| 224 |
+
Spatial coordinates encoding module
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
def __init__(
|
| 228 |
+
self,
|
| 229 |
+
embed_dim: int,
|
| 230 |
+
num_scales: int = 10,
|
| 231 |
+
sigma_min: float = 1.0,
|
| 232 |
+
sigma_max: float = 10.0,
|
| 233 |
+
):
|
| 234 |
+
super().__init__()
|
| 235 |
+
self.num_scales = num_scales
|
| 236 |
+
self.sigma_min = sigma_min
|
| 237 |
+
self.sigma_max = sigma_max
|
| 238 |
+
self.g = sigma_max / sigma_min
|
| 239 |
+
self.scales = torch.linspace(sigma_min, sigma_max, num_scales)
|
| 240 |
+
self.fc_layer = nn.Linear(embed_dim, embed_dim)
|
| 241 |
+
|
| 242 |
+
def scale_specific_encoder(
|
| 243 |
+
self, coordinates: torch.Tensor, scale: float
|
| 244 |
+
) -> torch.Tensor:
|
| 245 |
+
x, y = coordinates[..., 0], coordinates[..., 1]
|
| 246 |
+
constant = self.sigma_min * (self.g ** (scale / (self.num_scales - 1)))
|
| 247 |
+
x_transform = torch.cos(x / constant)
|
| 248 |
+
y_transform = torch.sin(y / constant)
|
| 249 |
+
transformed_coordinates = torch.stack([x_transform, y_transform], dim=-1)
|
| 250 |
+
return transformed_coordinates
|
| 251 |
+
|
| 252 |
+
def forward(self, coordinates: torch.Tensor) -> torch.Tensor:
|
| 253 |
+
transformed_coordinates = [
|
| 254 |
+
self.scale_specific_encoder(coordinates, scale) for scale in self.scales
|
| 255 |
+
]
|
| 256 |
+
transformed_coordinates = torch.cat(transformed_coordinates, dim=-1)
|
| 257 |
+
return self.fc_layer(transformed_coordinates)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class ConvTowerBlock(nn.Module):
|
| 261 |
+
def __init__(
|
| 262 |
+
self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int, num_cells: int
|
| 263 |
+
) -> None:
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.conv_layer = ConvBlock(
|
| 266 |
+
dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
|
| 267 |
+
)
|
| 268 |
+
self.res_conv = ResidualConvBlock(
|
| 269 |
+
dim_in=dim_out, dim_out=dim_out, seq_len=seq_len, kernel_size=1
|
| 270 |
+
)
|
| 271 |
+
self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)
|
| 272 |
+
self.num_cells = num_cells
|
| 273 |
+
|
| 274 |
+
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 275 |
+
residual = x
|
| 276 |
+
x = x.reshape(x.shape[0], x.shape[1], self.num_cells, -1) # noqa: FKA100
|
| 277 |
+
x = self.conv_layer(x)
|
| 278 |
+
x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
|
| 279 |
+
x = self.res_conv(x)
|
| 280 |
+
x = self.avg_pool(x)
|
| 281 |
+
return x, residual
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
class DeConvTowerBlock(nn.Module):
|
| 285 |
+
def __init__(
|
| 286 |
+
self,
|
| 287 |
+
dim_in: int,
|
| 288 |
+
dim_out: int,
|
| 289 |
+
kernel_size: int,
|
| 290 |
+
seq_len: int,
|
| 291 |
+
stride: int = 2,
|
| 292 |
+
num_cells: int = 1,
|
| 293 |
+
):
|
| 294 |
+
super().__init__()
|
| 295 |
+
self.deconv_block = DeConvBlock(
|
| 296 |
+
dim_in=dim_in,
|
| 297 |
+
dim_out=dim_out,
|
| 298 |
+
seq_len=seq_len,
|
| 299 |
+
kernel_size=kernel_size,
|
| 300 |
+
stride=stride,
|
| 301 |
+
)
|
| 302 |
+
self.res_deconv_block = ResidualDeConvBlock(
|
| 303 |
+
dim_in=dim_out, dim_out=dim_out, seq_len=seq_len * 2, kernel_size=1
|
| 304 |
+
)
|
| 305 |
+
self.num_cells = num_cells
|
| 306 |
+
|
| 307 |
+
def forward(self, x: torch.Tensor, res: torch.Tensor) -> torch.Tensor:
|
| 308 |
+
x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
|
| 309 |
+
x = self.deconv_block(x)
|
| 310 |
+
x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
|
| 311 |
+
x = self.res_deconv_block(x)
|
| 312 |
+
|
| 313 |
+
x = x + res
|
| 314 |
+
return x
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class MultiHeadAttention(nn.Module):
|
| 318 |
+
def __init__(
|
| 319 |
+
self,
|
| 320 |
+
num_heads: int,
|
| 321 |
+
key_size: int,
|
| 322 |
+
rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
|
| 323 |
+
add_bias_kv: bool = False,
|
| 324 |
+
value_size: Optional[int] = None,
|
| 325 |
+
model_size: Optional[int] = None,
|
| 326 |
+
name: Optional[str] = None,
|
| 327 |
+
):
|
| 328 |
+
super().__init__()
|
| 329 |
+
if not model_size:
|
| 330 |
+
model_size = key_size
|
| 331 |
+
if not value_size:
|
| 332 |
+
value_size = key_size
|
| 333 |
+
self.model_size = model_size
|
| 334 |
+
self.key_size = key_size
|
| 335 |
+
self.value_size = value_size
|
| 336 |
+
self.add_bias_kv = add_bias_kv
|
| 337 |
+
self.name = name
|
| 338 |
+
self.num_heads = num_heads
|
| 339 |
+
self._rotary_embedding_config = rotary_embedding_config
|
| 340 |
+
|
| 341 |
+
self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
|
| 342 |
+
self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
|
| 343 |
+
self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
|
| 344 |
+
self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
|
| 345 |
+
if self._rotary_embedding_config:
|
| 346 |
+
self._rotary_embedding = RotaryEmbedding(
|
| 347 |
+
self.key_size, self._rotary_embedding_config
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
def apply_rotary_embeddings(
|
| 351 |
+
self,
|
| 352 |
+
query: torch.Tensor,
|
| 353 |
+
key: torch.Tensor,
|
| 354 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 355 |
+
""" """
|
| 356 |
+
query, key = self._rotary_embedding(query, key)
|
| 357 |
+
return query, key
|
| 358 |
+
|
| 359 |
+
def forward(
|
| 360 |
+
self,
|
| 361 |
+
query: torch.Tensor,
|
| 362 |
+
key: torch.Tensor,
|
| 363 |
+
value: torch.Tensor,
|
| 364 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 365 |
+
attention_weight_bias: Optional[torch.Tensor] = None,
|
| 366 |
+
) -> dict[str, torch.Tensor]:
|
| 367 |
+
"""
|
| 368 |
+
Returns:
|
| 369 |
+
dictionary containing attention weights
|
| 370 |
+
and outputs.
|
| 371 |
+
"""
|
| 372 |
+
key_heads = self.w_k(key).reshape(
|
| 373 |
+
(*key.shape[:-1], self.num_heads, self.key_size)
|
| 374 |
+
)
|
| 375 |
+
query_heads = self.w_q(query).reshape(
|
| 376 |
+
(*query.shape[:-1], self.num_heads, self.key_size)
|
| 377 |
+
)
|
| 378 |
+
value_heads = self.w_v(value).reshape(
|
| 379 |
+
(*value.shape[:-1], self.num_heads, self.value_size)
|
| 380 |
+
)
|
| 381 |
+
if self._rotary_embedding_config:
|
| 382 |
+
query_heads, key_heads = self.apply_rotary_embeddings(
|
| 383 |
+
query_heads, key_heads
|
| 384 |
+
)
|
| 385 |
+
attention_weights = torch.einsum(
|
| 386 |
+
"...thd, ...Thd -> ...htT", query_heads, key_heads
|
| 387 |
+
)
|
| 388 |
+
sqrt_key_size = np.sqrt(self.key_size)
|
| 389 |
+
attention_weights = attention_weights / sqrt_key_size
|
| 390 |
+
if attention_mask:
|
| 391 |
+
attention_weights = torch.where(attention_mask, attention_weights, -1e30)
|
| 392 |
+
if attention_weight_bias:
|
| 393 |
+
attention_weights = F.softmax(
|
| 394 |
+
attention_weights + attention_weight_bias, dim=-1
|
| 395 |
+
)
|
| 396 |
+
else:
|
| 397 |
+
attention_weights = F.softmax(attention_weights, dim=-1)
|
| 398 |
+
value_out = torch.einsum(
|
| 399 |
+
"...htT, ...Thd->...thd", attention_weights, value_heads
|
| 400 |
+
)
|
| 401 |
+
value_out = value_out.reshape((*value_out.shape[:-2], -1))
|
| 402 |
+
embeddings = self.output(value_out)
|
| 403 |
+
|
| 404 |
+
return {"attention_weights": attention_weights, "embeddings": embeddings}
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
class SelfAttentionBlock(nn.Module):
|
| 408 |
+
def __init__(
|
| 409 |
+
self,
|
| 410 |
+
num_heads: int,
|
| 411 |
+
embed_dim: int,
|
| 412 |
+
ffn_embed_dim: int,
|
| 413 |
+
key_size: Optional[int] = None,
|
| 414 |
+
add_bias_kv: bool = False,
|
| 415 |
+
add_bias_fnn: bool = True,
|
| 416 |
+
ffn_activation_name: str = "gelu-no-approx",
|
| 417 |
+
use_glu_in_ffn: bool = False,
|
| 418 |
+
layer_norm_eps: float = 1e-5, # this is the default haiku value
|
| 419 |
+
pre_layer_norm: bool = True,
|
| 420 |
+
name: Optional[str] = None,
|
| 421 |
+
rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
|
| 422 |
+
):
|
| 423 |
+
super().__init__()
|
| 424 |
+
if key_size is None:
|
| 425 |
+
if embed_dim % num_heads != 0:
|
| 426 |
+
raise ValueError(
|
| 427 |
+
f"The embedding dimension should be divisible by the number of "
|
| 428 |
+
f"heads, however provided embedding dimension is {embed_dim} and "
|
| 429 |
+
f"the number of heads is {num_heads}."
|
| 430 |
+
)
|
| 431 |
+
else:
|
| 432 |
+
key_size = embed_dim // num_heads
|
| 433 |
+
|
| 434 |
+
# Get ffn activation function
|
| 435 |
+
self._pre_layer_norm = pre_layer_norm
|
| 436 |
+
self._use_glu_in_fnn = use_glu_in_ffn
|
| 437 |
+
# Define layers
|
| 438 |
+
if use_glu_in_ffn:
|
| 439 |
+
# user should multiply ffn_embed_dim by 2/3 when using GLU
|
| 440 |
+
# to keep total number of parameters equal
|
| 441 |
+
# see https://arxiv.org/pdf/2002.05202.pdf. for more details
|
| 442 |
+
# we multiply by 2 here as the output will be split in 2 for GLU
|
| 443 |
+
self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
|
| 444 |
+
else:
|
| 445 |
+
self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)
|
| 446 |
+
|
| 447 |
+
self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)
|
| 448 |
+
|
| 449 |
+
self.layer_norm_self_attention = nn.LayerNorm(
|
| 450 |
+
embed_dim,
|
| 451 |
+
)
|
| 452 |
+
self.layer_norm_mlp = nn.LayerNorm(embed_dim)
|
| 453 |
+
if ffn_activation_name == "swish":
|
| 454 |
+
self._ffn_activation_fn = nn.SiLU()
|
| 455 |
+
elif ffn_activation_name == "gelu-no-approx":
|
| 456 |
+
self._ffn_activation_fn = nn.GeLU(approximate="tanh")
|
| 457 |
+
else:
|
| 458 |
+
self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)
|
| 459 |
+
|
| 460 |
+
self.mha = MultiHeadAttention(
|
| 461 |
+
num_heads=num_heads,
|
| 462 |
+
key_size=key_size,
|
| 463 |
+
add_bias_kv=add_bias_kv,
|
| 464 |
+
model_size=embed_dim,
|
| 465 |
+
name="self_attention",
|
| 466 |
+
rotary_embedding_config=rotary_embedding_config,
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
def mlp(self, embed: torch.Tensor) -> torch.Tensor:
|
| 470 |
+
|
| 471 |
+
if self._pre_layer_norm:
|
| 472 |
+
x = self.layer_norm_mlp(embed)
|
| 473 |
+
else:
|
| 474 |
+
x = embed
|
| 475 |
+
|
| 476 |
+
if self._use_glu_in_fnn:
|
| 477 |
+
x = self.fc1(x)
|
| 478 |
+
x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
|
| 479 |
+
x = self._ffn_activation_fn(x1) * x2
|
| 480 |
+
else:
|
| 481 |
+
x = self._ffn_activation_fn(self.fc1(x))
|
| 482 |
+
x = self.fc2(x)
|
| 483 |
+
|
| 484 |
+
if not self._pre_layer_norm:
|
| 485 |
+
x = self.layer_norm_mlp(x + embed)
|
| 486 |
+
return x
|
| 487 |
+
|
| 488 |
+
def forward(
|
| 489 |
+
self,
|
| 490 |
+
x: torch.Tensor,
|
| 491 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 492 |
+
attention_weight_bias: Optional[torch.Tensor] = None,
|
| 493 |
+
) -> torch.Tensor:
|
| 494 |
+
|
| 495 |
+
res = x
|
| 496 |
+
if self._pre_layer_norm:
|
| 497 |
+
x = self.layer_norm_self_attention(x)
|
| 498 |
+
|
| 499 |
+
output = self.mha(
|
| 500 |
+
x,
|
| 501 |
+
x,
|
| 502 |
+
x,
|
| 503 |
+
attention_mask=attention_mask,
|
| 504 |
+
attention_weight_bias=attention_weight_bias,
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
if not self._pre_layer_norm:
|
| 508 |
+
output["embeddings"] = self.layer_norm_self_attention(
|
| 509 |
+
output["embeddings"] + res
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
x = output["embeddings"]
|
| 513 |
+
else:
|
| 514 |
+
x = output["embeddings"]
|
| 515 |
+
x = res + x
|
| 516 |
+
|
| 517 |
+
# MLP
|
| 518 |
+
if not self._pre_layer_norm:
|
| 519 |
+
x = self.mlp(x)
|
| 520 |
+
else:
|
| 521 |
+
x = x + self.mlp(x)
|
| 522 |
+
|
| 523 |
+
output["embeddings"] = x
|
| 524 |
+
return output
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
class LMHead(nn.Module):
|
| 528 |
+
def __init__(
|
| 529 |
+
self, dim_in: int, embed_dim: int, dim_out: int, num_hidden_layers: int
|
| 530 |
+
) -> None:
|
| 531 |
+
""" """
|
| 532 |
+
super().__init__()
|
| 533 |
+
self.num_hidden_layers = num_hidden_layers
|
| 534 |
+
self.linear_layers = nn.ModuleList([nn.Linear(dim_in, embed_dim)])
|
| 535 |
+
self.linear_layers.extend(
|
| 536 |
+
nn.ModuleList(
|
| 537 |
+
[nn.Linear(embed_dim, embed_dim)] for _ in range(num_hidden_layers - 1)
|
| 538 |
+
)
|
| 539 |
+
)
|
| 540 |
+
self.linear_out = nn.Linear(embed_dim, dim_out)
|
| 541 |
+
|
| 542 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 543 |
+
res = x # noqa: F841
|
| 544 |
+
x = F.gelu(x, approximate="tanh")
|
| 545 |
+
for layer in self.linear_layers:
|
| 546 |
+
x = layer(x)
|
| 547 |
+
x = F.gelu(x, approximate="tanh")
|
| 548 |
+
out = self.linear_out(x)
|
| 549 |
+
return out
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
@dataclass
|
| 553 |
+
class sCTConfig(PretrainedConfig): # noqa: N801
|
| 554 |
+
model_type = "sCT"
|
| 555 |
+
|
| 556 |
+
def __init__(self, **kwargs): # type: ignore
|
| 557 |
+
self.alphabet_size = kwargs.get("alphabet_size", 7)
|
| 558 |
+
self.pad_token_id = kwargs.get("pad_token_id", 5)
|
| 559 |
+
self.mask_token_id = kwargs.get("mask_token_id", 6)
|
| 560 |
+
self.cell_len = kwargs.get("cell_len", 19968)
|
| 561 |
+
|
| 562 |
+
self.num_downsamples = kwargs.get("num_downsamples", 8)
|
| 563 |
+
self.attention_heads = kwargs.get("attention_heads", 16)
|
| 564 |
+
self.key_size = kwargs.get("key_size", None)
|
| 565 |
+
self.token_embed_dim = kwargs.get("token_embed_dim", 16)
|
| 566 |
+
|
| 567 |
+
self.embed_dim = kwargs.get("embed_dim", 1024)
|
| 568 |
+
self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 2048)
|
| 569 |
+
self.num_layers = kwargs.get("num_layers", 4)
|
| 570 |
+
self.layer_norm_eps = kwargs.get("layer_norm_eps", 1e-5)
|
| 571 |
+
self.interpolation_method = kwargs.get("interpolation_method", "nearest")
|
| 572 |
+
|
| 573 |
+
# bad hack to satisfy cellnt_celltype_annotation.py:312
|
| 574 |
+
self.max_positions: int = kwargs.get("max_positions", 20480)
|
| 575 |
+
self.num_cells: int = kwargs.get("num_cells", 50)
|
| 576 |
+
self.num_hidden_layers_head: int = kwargs.get("num_hidden_layers_head", 1)
|
| 577 |
+
|
| 578 |
+
self.use_skip_connection: bool = kwargs.get("use_skip_connection", True)
|
| 579 |
+
|
| 580 |
+
# logging
|
| 581 |
+
self.use_gradient_checkpointing: bool = False
|
| 582 |
+
|
| 583 |
+
# return
|
| 584 |
+
self.embeddings_layers_to_save: Tuple[int, ...] = kwargs.get(
|
| 585 |
+
"embeddings_layers_to_save", ()
|
| 586 |
+
)
|
| 587 |
+
self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
|
| 588 |
+
"attention_maps_to_save", []
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
# Spatial info configuration
|
| 592 |
+
self.use_spatial_information: bool = kwargs.get(
|
| 593 |
+
"use_spatial_information", False
|
| 594 |
+
)
|
| 595 |
+
self.num_scales: int = kwargs.get("num_scales", 10)
|
| 596 |
+
self.sigma_min: float = kwargs.get("sigma_min", 1.0)
|
| 597 |
+
self.sigma_max: float = kwargs.get("sigma_max", 10.0)
|
| 598 |
+
|
| 599 |
+
super().__init__(**kwargs)
|
| 600 |
+
|
| 601 |
+
def __post_init__(self) -> None: # type: ignore # noqa: N807
|
| 602 |
+
"""
|
| 603 |
+
Checks that the given values are compatible.
|
| 604 |
+
"""
|
| 605 |
+
if self.key_size is None:
|
| 606 |
+
if not self.embed_dim % self.attention_heads == 0:
|
| 607 |
+
raise ValueError(
|
| 608 |
+
f"When no key size is provided, the embedding dimension"
|
| 609 |
+
f"should be divisible by the number of heads, however "
|
| 610 |
+
f"provided embedding dimension is {self.embed_dim} and "
|
| 611 |
+
f"the number of heads is {self.attention_heads}."
|
| 612 |
+
)
|
| 613 |
+
self.key_size = self.embed_dim // self.attention_heads
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
class sCT(PreTrainedModel): # noqa: N801
|
| 617 |
+
config_class = sCTConfig
|
| 618 |
+
|
| 619 |
+
def __init__(self, config: sCTConfig):
|
| 620 |
+
# super().__init__(config)
|
| 621 |
+
super().__init__(config=config)
|
| 622 |
+
if config.use_spatial_information:
|
| 623 |
+
self.spatial_embed_layer = SpatialEncoding(
|
| 624 |
+
embed_dim=config.token_embed_dim,
|
| 625 |
+
num_scales=config.num_scales,
|
| 626 |
+
sigma_min=config.sigma_min,
|
| 627 |
+
sigma_max=config.sigma_max,
|
| 628 |
+
)
|
| 629 |
+
self.cell_len = config.cell_len
|
| 630 |
+
|
| 631 |
+
self.token_embed = nn.Embedding(config.alphabet_size, config.token_embed_dim)
|
| 632 |
+
|
| 633 |
+
attention_maps_to_save = config.attention_maps_to_save
|
| 634 |
+
self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})
|
| 635 |
+
|
| 636 |
+
self._attention_maps_per_layer_to_save = {
|
| 637 |
+
layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
|
| 638 |
+
for layer in self._attention_layers_to_save
|
| 639 |
+
}
|
| 640 |
+
|
| 641 |
+
max_layer = max(self._attention_layers_to_save + [0])
|
| 642 |
+
if max_layer > config.num_layers:
|
| 643 |
+
raise ValueError(
|
| 644 |
+
f"You are requiring attention maps for layer {max_layer}, "
|
| 645 |
+
f"while the model has {config.num_layers} layers only."
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
filter_list = np.linspace(
|
| 649 |
+
config.token_embed_dim,
|
| 650 |
+
config.embed_dim,
|
| 651 |
+
config.num_downsamples + 1,
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
filter_list = np.ceil(filter_list / 32) * 32
|
| 655 |
+
filter_list = filter_list.astype(int).tolist()
|
| 656 |
+
|
| 657 |
+
self._filter_list = filter_list
|
| 658 |
+
self._rotary_embedding_config = RotaryEmbeddingConfig(rescaling_factor=None)
|
| 659 |
+
|
| 660 |
+
self.stem_conv = nn.Sequential(
|
| 661 |
+
nn.Conv1d(
|
| 662 |
+
in_channels=config.token_embed_dim,
|
| 663 |
+
out_channels=config.token_embed_dim,
|
| 664 |
+
kernel_size=15,
|
| 665 |
+
padding="same",
|
| 666 |
+
),
|
| 667 |
+
nn.GELU(approximate="tanh"),
|
| 668 |
+
)
|
| 669 |
+
downsampled_seq_lens = [
|
| 670 |
+
self.cell_len // (2**i) for i in range(len(filter_list) - 1)
|
| 671 |
+
]
|
| 672 |
+
|
| 673 |
+
self.conv_tower = nn.ModuleList(
|
| 674 |
+
[
|
| 675 |
+
ConvTowerBlock(
|
| 676 |
+
dim_in=self._filter_list[i],
|
| 677 |
+
dim_out=self._filter_list[i + 1],
|
| 678 |
+
kernel_size=5,
|
| 679 |
+
seq_len=seq_len,
|
| 680 |
+
num_cells=config.num_cells,
|
| 681 |
+
)
|
| 682 |
+
for i, seq_len in zip(range(len(filter_list) - 1), downsampled_seq_lens)
|
| 683 |
+
]
|
| 684 |
+
)
|
| 685 |
+
|
| 686 |
+
self.deconv_tower = nn.ModuleList(
|
| 687 |
+
[
|
| 688 |
+
DeConvTowerBlock(
|
| 689 |
+
dim_in=filter_list[-1 - i],
|
| 690 |
+
dim_out=filter_list[-1 - i - 1],
|
| 691 |
+
kernel_size=5,
|
| 692 |
+
stride=2,
|
| 693 |
+
seq_len=seq_len // 2,
|
| 694 |
+
num_cells=config.num_cells,
|
| 695 |
+
)
|
| 696 |
+
for i, seq_len in zip(
|
| 697 |
+
range(len(filter_list) - 1), downsampled_seq_lens[::-1]
|
| 698 |
+
)
|
| 699 |
+
]
|
| 700 |
+
)
|
| 701 |
+
self.transformer_layers = nn.ModuleList(
|
| 702 |
+
[
|
| 703 |
+
SelfAttentionBlock(
|
| 704 |
+
num_heads=config.attention_heads,
|
| 705 |
+
embed_dim=config.embed_dim,
|
| 706 |
+
ffn_embed_dim=config.ffn_embed_dim,
|
| 707 |
+
key_size=config.key_size,
|
| 708 |
+
add_bias_kv=False,
|
| 709 |
+
add_bias_fnn=False,
|
| 710 |
+
ffn_activation_name="swish",
|
| 711 |
+
use_glu_in_ffn=True,
|
| 712 |
+
layer_norm_eps=1e-5, # this is the default haiku value
|
| 713 |
+
pre_layer_norm=True,
|
| 714 |
+
name=f"attention_layer_{layer_idx}",
|
| 715 |
+
rotary_embedding_config=self._rotary_embedding_config,
|
| 716 |
+
)
|
| 717 |
+
for layer_idx in range(config.num_layers)
|
| 718 |
+
]
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
self.lm_head = LMHead(
|
| 722 |
+
dim_in=config.token_embed_dim,
|
| 723 |
+
embed_dim=config.embed_dim,
|
| 724 |
+
dim_out=config.alphabet_size,
|
| 725 |
+
num_hidden_layers=config.num_hidden_layers_head,
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
def forward(self, input_ids: torch.Tensor) -> dict[str, torch.Tensor]:
|
| 729 |
+
outs = {}
|
| 730 |
+
embeddings = self.token_embed(input_ids)
|
| 731 |
+
x = embeddings.permute(0, 2, 1)
|
| 732 |
+
x = self.stem_conv(x)
|
| 733 |
+
residuals = []
|
| 734 |
+
for _idx, conv_block in enumerate(self.conv_tower):
|
| 735 |
+
x, res = conv_block(x)
|
| 736 |
+
residuals.append(res)
|
| 737 |
+
residuals = residuals[::-1]
|
| 738 |
+
x = x.permute(0, 2, 1)
|
| 739 |
+
|
| 740 |
+
for layer_idx, transformer in enumerate(self.transformer_layers):
|
| 741 |
+
output = transformer(x)
|
| 742 |
+
x = output["embeddings"]
|
| 743 |
+
if (layer_idx + 1) in self.config.embeddings_layers_to_save:
|
| 744 |
+
outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
|
| 745 |
+
if (layer_idx + 1) in self._attention_layers_to_save:
|
| 746 |
+
for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
|
| 747 |
+
dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
|
| 748 |
+
outs[dkey] = output["attention_weights"][:, map_number + 1]
|
| 749 |
+
x = x.permute(0, 2, 1)
|
| 750 |
+
for deconv_block, res in zip(self.deconv_tower, residuals):
|
| 751 |
+
x = deconv_block(x, res)
|
| 752 |
+
x = x.permute(0, 2, 1)
|
| 753 |
+
logits = self.lm_head(x)
|
| 754 |
+
outs["logits"] = logits
|
| 755 |
+
|
| 756 |
+
return outs
|