diff --git "a/modeling_isoformer.py" "b/modeling_isoformer.py" --- "a/modeling_isoformer.py" +++ "b/modeling_isoformer.py" @@ -1,3369 +1,12 @@ -from isoformer_config import IsoformerConfig -from modeling_esm import NTForMaskedLM, MultiHeadAttention -from modeling_esm_original import EsmForMaskedLM -from enformer_pytorch import Enformer, str_to_one_hot, EnformerConfig -from typing import Dict -import torch.utils.checkpoint -from torch import nn -from torch.nn import SiLU -from transformers.utils import logging - -logger = logging.get_logger(__name__) - -_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" -_CONFIG_FOR_DOC = "NTConfig" - -ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ - "facebook/esm2_t6_8M_UR50D", - "facebook/esm2_t12_35M_UR50D", - # This is not a complete list of all ESM models! - # See all ESM models at https://huggingface.co/models?filter=esm -] - - -import math -from typing import List, Optional, Tuple, Union - -import torch -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss -from transformers.file_utils import ( - add_code_sample_docstrings, - add_start_docstrings, - add_start_docstrings_to_model_forward, -) -from transformers.modeling_outputs import ( - BaseModelOutputWithPastAndCrossAttentions, - BaseModelOutputWithPoolingAndCrossAttentions, - MaskedLMOutput, - SequenceClassifierOutput, - TokenClassifierOutput, -) -from transformers.modeling_utils import ( - PreTrainedModel, - find_pruneable_heads_and_indices, - prune_linear_layer, -) -from transformers.models.esm.configuration_esm import EsmConfig -from transformers.utils import logging - -logger = logging.get_logger(__name__) - -_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" -_CONFIG_FOR_DOC = "EsmConfig" - - -def rotate_half(x): - x1, x2 = x.chunk(2, dim=-1) - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(x, cos, sin): - cos = cos[:, :, : x.shape[-2], :] - sin = sin[:, :, : x.shape[-2], :] - - return (x * cos) + (rotate_half(x) * sin) - - -def gelu(x): - """ - This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. - """ - return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) - - -def symmetrize(x): - "Make layer symmetric in final two dimensions, used for contact prediction." - return x + x.transpose(-1, -2) - - -def average_product_correct(x): - "Perform average product correct, used for contact prediction." - a1 = x.sum(-1, keepdims=True) - a2 = x.sum(-2, keepdims=True) - a12 = x.sum((-1, -2), keepdims=True) - - avg = a1 * a2 - avg.div_(a12) # in-place to reduce memory - normalized = x - avg - return normalized - - -class RotaryEmbedding(torch.nn.Module): - """ - Rotary position embeddings based on those in - [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation - matrices which depend on their relative positions. - """ - - def __init__(self, dim: int): - super().__init__() - # Generate and save the inverse frequency buffer (non trainable) - inv_freq = 1.0 / ( - 10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim) - ) - inv_freq = inv_freq - self.register_buffer("inv_freq", inv_freq) - - self._seq_len_cached = None - self._cos_cached = None - self._sin_cached = None - - def _update_cos_sin_tables(self, x, seq_dimension=2): - seq_len = x.shape[seq_dimension] - - # Reset the tables if the sequence length has changed, - # or if we're on a new device (possibly due to tracing for instance) - if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: - self._seq_len_cached = seq_len - t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( - self.inv_freq - ) - freqs = torch.outer(t, self.inv_freq) - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - - self._cos_cached = emb.cos()[None, None, :, :] - self._sin_cached = emb.sin()[None, None, :, :] - - return self._cos_cached, self._sin_cached - - def forward( - self, q: torch.Tensor, k: torch.Tensor - ) -> Tuple[torch.Tensor, torch.Tensor]: - self._cos_cached, self._sin_cached = self._update_cos_sin_tables( - k, seq_dimension=-2 - ) - - return ( - apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), - apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), - ) - - -class EsmContactPredictionHead(nn.Module): - """Performs symmetrization, apc, and computes a logistic regression on the output features""" - - def __init__( - self, - in_features: int, - bias=True, - eos_idx: int = 2, - ): - super().__init__() - self.in_features = in_features - self.eos_idx = eos_idx - self.regression = nn.Linear(in_features, 1, bias) - self.activation = nn.Sigmoid() - - def forward(self, tokens, attentions): - # remove eos token attentions - eos_mask = tokens.ne(self.eos_idx).to(attentions) - eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) - attentions = attentions * eos_mask[:, None, None, :, :] - attentions = attentions[..., :-1, :-1] - # remove cls token attentions - attentions = attentions[..., 1:, 1:] - batch_size, layers, heads, seqlen, _ = attentions.size() - attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) - - # features: batch x channels x tokens x tokens (symmetric) - attentions = attentions.to( - self.regression.weight.device - ) # attentions always float32, may need to convert to float16 - attentions = average_product_correct(symmetrize(attentions)) - attentions = attentions.permute(0, 2, 3, 1) - return self.activation(self.regression(attentions).squeeze(3)) - - -class EsmEmbeddings(nn.Module): - """ - Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. - """ - - def __init__(self, config): - super().__init__() - self.word_embeddings = nn.Embedding( - config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id - ) - - if config.emb_layer_norm_before: - self.layer_norm = nn.LayerNorm( - config.hidden_size, eps=config.layer_norm_eps - ) - else: - self.layer_norm = None - self.dropout = nn.Dropout(config.hidden_dropout_prob) - # position_ids (1, len position emb) is contiguous in memory and exported when serialized - self.position_embedding_type = getattr( - config, "position_embedding_type", "absolute" - ) - self.register_buffer( - "position_ids", - torch.arange(config.max_position_embeddings).expand((1, -1)), - persistent=False, - ) - - self.padding_idx = config.pad_token_id - self.position_embeddings = nn.Embedding( - config.max_position_embeddings, - config.hidden_size, - padding_idx=self.padding_idx, - ) - self.token_dropout = config.token_dropout - self.mask_token_id = config.mask_token_id - - def forward( - self, - input_ids=None, - attention_mask=None, - position_ids=None, - inputs_embeds=None, - past_key_values_length=0, - ): - if position_ids is None: - if input_ids is not None: - # Create the position ids from the input token ids. Any padded tokens remain padded. - position_ids = create_position_ids_from_input_ids( - input_ids, self.padding_idx, past_key_values_length - ) - else: - position_ids = self.create_position_ids_from_inputs_embeds( - inputs_embeds - ) - - if inputs_embeds is None: - inputs_embeds = self.word_embeddings(input_ids) - - # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an - # embedding_scale factor here. - embeddings = inputs_embeds - - # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout - # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, - # masked tokens are treated as if they were selected for input dropout and zeroed out. - # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by - # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). - # This is analogous to the way that dropout layers scale down outputs during evaluation when not - # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). - if self.token_dropout: - embeddings = embeddings.masked_fill( - (input_ids == self.mask_token_id).unsqueeze(-1), 0.0 - ) - mask_ratio_train = ( - 0.15 * 0.8 - ) # Hardcoded as the ratio used in all ESM model training runs - src_lengths = attention_mask.sum(-1) - mask_ratio_observed = (input_ids == self.mask_token_id).sum( - -1 - ).float() / src_lengths - embeddings = ( - embeddings - * (1 - mask_ratio_train) - / (1 - mask_ratio_observed)[:, None, None] - ).to(embeddings.dtype) - - if self.position_embedding_type == "absolute": - position_embeddings = self.position_embeddings(position_ids) - embeddings = embeddings + position_embeddings - - if self.layer_norm is not None: - embeddings = self.layer_norm(embeddings) - if attention_mask is not None: - embeddings = (embeddings * attention_mask.unsqueeze(-1)).to( - embeddings.dtype - ) - # FIRST DIFF BETWEEN JAX AND TORCH - # Matt: I think this line was copied incorrectly from BERT, disabling it for now. - # embeddings = self.dropout(embeddings) - return embeddings - - def create_position_ids_from_inputs_embeds(self, inputs_embeds): - """ - We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. - - Args: - inputs_embeds: torch.Tensor - - Returns: torch.Tensor - """ - input_shape = inputs_embeds.size()[:-1] - sequence_length = input_shape[1] - - position_ids = torch.arange( - self.padding_idx + 1, - sequence_length + self.padding_idx + 1, - dtype=torch.long, - device=inputs_embeds.device, - ) - return position_ids.unsqueeze(0).expand(input_shape) - - -class EsmSelfAttention(nn.Module): - def __init__(self, config, position_embedding_type=None): - super().__init__() - if config.hidden_size % config.num_attention_heads != 0 and not hasattr( - config, "embedding_size" - ): - raise ValueError( - f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " - f"heads ({config.num_attention_heads})" - ) - - self.num_attention_heads = config.num_attention_heads - self.attention_head_size = int(config.hidden_size / config.num_attention_heads) - self.all_head_size = self.num_attention_heads * self.attention_head_size - - self.query = nn.Linear(config.hidden_size, self.all_head_size) - self.key = nn.Linear(config.hidden_size, self.all_head_size) - self.value = nn.Linear(config.hidden_size, self.all_head_size) - - self.dropout = nn.Dropout(config.attention_probs_dropout_prob) - self.position_embedding_type = position_embedding_type or getattr( - config, "position_embedding_type", "absolute" - ) - self.rotary_embeddings = None - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - self.max_position_embeddings = config.max_position_embeddings - self.distance_embedding = nn.Embedding( - 2 * config.max_position_embeddings - 1, self.attention_head_size - ) - elif self.position_embedding_type == "rotary": - self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) - - self.is_decoder = config.is_decoder - - def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: - new_x_shape = x.size()[:-1] + ( - self.num_attention_heads, - self.attention_head_size, - ) - x = x.view(new_x_shape) - return x.permute(0, 2, 1, 3) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.FloatTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.Tensor]: - mixed_query_layer = self.query(hidden_states) - - # If this is instantiated as a cross-attention module, the keys - # and values come from an encoder; the attention mask needs to be - # such that the encoder's padding tokens are not attended to. - is_cross_attention = encoder_hidden_states is not None - - if is_cross_attention and past_key_value is not None: - # reuse k,v, cross_attentions - key_layer = past_key_value[0] - value_layer = past_key_value[1] - attention_mask = encoder_attention_mask - elif is_cross_attention: - key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) - value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) - attention_mask = encoder_attention_mask - elif past_key_value is not None: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - key_layer = torch.cat([past_key_value[0], key_layer], dim=2) - value_layer = torch.cat([past_key_value[1], value_layer], dim=2) - else: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - - query_layer = self.transpose_for_scores(mixed_query_layer) - - # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). - # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, - # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original - # ESM code and fix rotary embeddings. - query_layer = query_layer * self.attention_head_size**-0.5 - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_layer, value_layer) - - if self.position_embedding_type == "rotary": - query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) - - # Take the dot product between "query" and "key" to get the raw attention scores. - attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) - - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - seq_length = hidden_states.size()[1] - position_ids_l = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(-1, 1) - position_ids_r = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(1, -1) - distance = position_ids_l - position_ids_r - positional_embedding = self.distance_embedding( - distance + self.max_position_embeddings - 1 - ) - positional_embedding = positional_embedding.to( - dtype=query_layer.dtype - ) # fp16 compatibility - - if self.position_embedding_type == "relative_key": - relative_position_scores = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - attention_scores = attention_scores + relative_position_scores - elif self.position_embedding_type == "relative_key_query": - relative_position_scores_query = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - relative_position_scores_key = torch.einsum( - "bhrd,lrd->bhlr", key_layer, positional_embedding - ) - attention_scores = ( - attention_scores - + relative_position_scores_query - + relative_position_scores_key - ) - - if attention_mask is not None: - # Apply the attention mask is (precomputed for all layers in EsmModel forward() function) - attention_scores = attention_scores + attention_mask - - # Normalize the attention scores to probabilities. - attention_probs = nn.functional.softmax(attention_scores, dim=-1) - - attention_mask_widened = ( - attention_mask.repeat( - attention_probs.shape[0], - attention_probs.shape[1], - attention_probs.shape[2], - 1, - ).permute(0, 1, 3, 2) - == 0 - ) - attention_probs = torch.where( - attention_mask_widened, attention_probs, 0.00097656 - ) - - # SECOND DIFF BETWEEN JAX AND TORCH - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_probs = self.dropout(attention_probs) - - # Mask heads if we want to - if head_mask is not None: - attention_probs = attention_probs * head_mask - - context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer) - - context_layer = context_layer.permute(0, 2, 1, 3).contiguous() - new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) - context_layer = context_layer.view(new_context_layer_shape) - - outputs = ( - (context_layer, attention_probs) if output_attentions else (context_layer,) - ) - - if self.is_decoder: - outputs = outputs + (past_key_value,) - return outputs - - -class EsmSelfOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = hidden_states + input_tensor - return hidden_states - - -class EsmAttention(nn.Module): - def __init__(self, config): - super().__init__() - self.self = EsmSelfAttention(config) - self.output = EsmSelfOutput(config) - self.pruned_heads = set() - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - def prune_heads(self, heads): - if len(heads) == 0: - return - heads, index = find_pruneable_heads_and_indices( - heads, - self.self.num_attention_heads, - self.self.attention_head_size, - self.pruned_heads, - ) - - # Prune linear layers - self.self.query = prune_linear_layer(self.self.query, index) - self.self.key = prune_linear_layer(self.self.key, index) - self.self.value = prune_linear_layer(self.self.value, index) - self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) - - # Update hyper params and store pruned heads - self.self.num_attention_heads = self.self.num_attention_heads - len(heads) - self.self.all_head_size = ( - self.self.attention_head_size * self.self.num_attention_heads - ) - self.pruned_heads = self.pruned_heads.union(heads) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - hidden_states_ln = self.LayerNorm(hidden_states) - self_outputs = self.self( - hidden_states_ln, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - attention_output = self.output(self_outputs[0], hidden_states) - outputs = (attention_output,) + self_outputs[ - 1: - ] # add attentions if we output them - return outputs - - -class EsmIntermediate(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.intermediate_size) - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - hidden_states = self.dense(hidden_states) - hidden_states = gelu(hidden_states) - return hidden_states - - -class EsmOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.intermediate_size, config.hidden_size) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = hidden_states + input_tensor - return hidden_states - - -class EsmLayer(nn.Module): - def __init__(self, config): - super().__init__() - self.chunk_size_feed_forward = config.chunk_size_feed_forward - self.seq_len_dim = 1 - self.attention = EsmAttention(config) - self.is_decoder = config.is_decoder - self.add_cross_attention = config.add_cross_attention - if self.add_cross_attention: - if not self.is_decoder: - raise RuntimeError( - f"{self} should be used as a decoder model if cross attention is added" - ) - self.crossattention = EsmAttention(config) - self.intermediate = EsmIntermediate(config) - self.output = EsmOutput(config) - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 - self_attn_past_key_value = ( - past_key_value[:2] if past_key_value is not None else None - ) - self_attention_outputs = self.attention( - hidden_states, - attention_mask, - head_mask, - output_attentions=output_attentions, - past_key_value=self_attn_past_key_value, - ) - attention_output = self_attention_outputs[0] - - # if decoder, the last output is tuple of self-attn cache - if self.is_decoder: - outputs = self_attention_outputs[1:-1] - present_key_value = self_attention_outputs[-1] - else: - outputs = self_attention_outputs[ - 1: - ] # add self attentions if we output attention weights - - cross_attn_present_key_value = None - if self.is_decoder and encoder_hidden_states is not None: - if not hasattr(self, "crossattention"): - raise AttributeError( - f"If `encoder_hidden_states` are passed, {self} has to be instantiated" - " with cross-attention layers by setting `config.add_cross_attention=True`" - ) - - # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple - cross_attn_past_key_value = ( - past_key_value[-2:] if past_key_value is not None else None - ) - cross_attention_outputs = self.crossattention( - attention_output, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - cross_attn_past_key_value, - output_attentions, - ) - attention_output = cross_attention_outputs[0] - outputs = ( - outputs + cross_attention_outputs[1:-1] - ) # add cross attentions if we output attention weights - - # add cross-attn cache to positions 3,4 of present_key_value tuple - cross_attn_present_key_value = cross_attention_outputs[-1] - present_key_value = present_key_value + cross_attn_present_key_value - - layer_output = self.feed_forward_chunk(attention_output) - - outputs = (layer_output,) + outputs - - # if decoder, return the attn key/values as the last output - if self.is_decoder: - outputs = outputs + (present_key_value,) - return outputs - - def feed_forward_chunk(self, attention_output): - attention_output_ln = self.LayerNorm(attention_output) - intermediate_output = self.intermediate(attention_output_ln) - layer_output = self.output(intermediate_output, attention_output) - return layer_output - - -class EsmEncoder(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.layer = nn.ModuleList( - [EsmLayer(config) for _ in range(config.num_hidden_layers)] - ) - self.emb_layer_norm_after = nn.LayerNorm( - config.hidden_size, eps=config.layer_norm_eps - ) - self.gradient_checkpointing = False - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_values=None, - use_cache=None, - output_attentions=False, - output_hidden_states=False, - return_dict=True, - ): - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " - "`use_cache=False`..." - ) - use_cache = False - all_hidden_states = () if output_hidden_states else None - all_self_attentions = () if output_attentions else None - all_cross_attentions = ( - () if output_attentions and self.config.add_cross_attention else None - ) - - next_decoder_cache = () if use_cache else None - for i, layer_module in enumerate(self.layer): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - layer_head_mask = head_mask[i] if head_mask is not None else None - past_key_value = past_key_values[i] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - layer_module.__call__, - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - else: - layer_outputs = layer_module( - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - - hidden_states = layer_outputs[0] - if use_cache: - next_decoder_cache = next_decoder_cache + (layer_outputs[-1],) - if output_attentions: - all_self_attentions = all_self_attentions + (layer_outputs[1],) - if self.config.add_cross_attention: - all_cross_attentions = all_cross_attentions + (layer_outputs[2],) - - if self.emb_layer_norm_after: - hidden_states = self.emb_layer_norm_after(hidden_states) - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if not return_dict: - return tuple( - v - for v in [ - hidden_states, - next_decoder_cache, - all_hidden_states, - all_self_attentions, - all_cross_attentions, - ] - if v is not None - ) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=next_decoder_cache, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - cross_attentions=all_cross_attentions, - ) - - -# Copied from transformers.models.bert.modeling_bert.BertPooler -class EsmPooler(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.activation = nn.Tanh() - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - # We "pool" the model by simply taking the hidden state corresponding - # to the first token. - first_token_tensor = hidden_states[:, 0] - pooled_output = self.dense(first_token_tensor) - pooled_output = self.activation(pooled_output) - return pooled_output - - -class EsmPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = EsmConfig - base_model_prefix = "esm" - supports_gradient_checkpointing = True - _no_split_modules = [ - "EsmLayer", - "EsmFoldTriangularSelfAttentionBlock", - "EsmEmbeddings", - ] - - # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights - def _init_weights(self, module): - """Initialize the weights""" - if isinstance(module, nn.Linear): - # Slightly different from the TF version which uses truncated_normal for initialization - # cf https://github.com/pytorch/pytorch/pull/5617 - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - -ESM_START_DOCSTRING = r""" - - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`EsmConfig`]): Model configuration class with all the parameters of the - model. Initializing with a config file does not load the weights associated with the model, only the - configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - -ESM_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `({0})`): - Indices of input sequence tokens in the vocabulary. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - position_ids (`torch.LongTensor` of shape `({0})`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.max_position_embeddings - 1]`. - - [What are position IDs?](../glossary#position-ids) - head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", - ESM_START_DOCSTRING, -) -class EsmModel(EsmPreTrainedModel): - """ - - The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of - cross-attention is added between the self-attention layers, following the architecture described in [Attention is - all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, - Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. - - To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set - to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and - `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. - """ - - def __init__(self, config, add_pooling_layer=True): - super().__init__(config) - self.config = config - - self.embeddings = EsmEmbeddings(config) - self.encoder = EsmEncoder(config) - - self.pooler = EsmPooler(config) if add_pooling_layer else None - - self.contact_head = EsmContactPredictionHead( - in_features=config.num_hidden_layers * config.num_attention_heads, bias=True - ) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embeddings.word_embeddings - - def set_input_embeddings(self, value): - self.embeddings.word_embeddings = value - - def _prune_heads(self, heads_to_prune): - """ - Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base - class PreTrainedModel - """ - for layer, heads in heads_to_prune.items(): - self.encoder.layer[layer].attention.prune_heads(heads) - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=BaseModelOutputWithPoolingAndCrossAttentions, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.Tensor] = None, - encoder_hidden_states: Optional[torch.Tensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: - r""" - encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if - the model is configured as a decoder. - encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in - the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): - Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - """ - output_attentions = ( - output_attentions - if output_attentions is not None - else self.config.output_attentions - ) - output_hidden_states = ( - output_hidden_states - if output_hidden_states is not None - else self.config.output_hidden_states - ) - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - if self.config.is_decoder: - use_cache = use_cache if use_cache is not None else self.config.use_cache - else: - use_cache = False - - if input_ids is not None and inputs_embeds is not None: - raise ValueError( - "You cannot specify both input_ids and inputs_embeds at the same time" - ) - elif input_ids is not None: - # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) - input_shape = input_ids.size() - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") - - batch_size, seq_length = input_shape - device = input_ids.device if input_ids is not None else inputs_embeds.device - - # past_key_values_length - past_key_values_length = ( - past_key_values[0][0].shape[2] if past_key_values is not None else 0 - ) - - if attention_mask is None: - attention_mask = torch.ones( - ((batch_size, seq_length + past_key_values_length)), device=device - ) - - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( - attention_mask, input_shape - ) - - # If a 2D or 3D attention mask is provided for the cross-attention - # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] - if self.config.is_decoder and encoder_hidden_states is not None: - ( - encoder_batch_size, - encoder_sequence_length, - _, - ) = encoder_hidden_states.size() - encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) - if encoder_attention_mask is None: - encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) - encoder_extended_attention_mask = self.invert_attention_mask( - encoder_attention_mask - ) - else: - encoder_extended_attention_mask = None - - # Prepare head mask if needed - # 1.0 in head_mask indicate we keep the head - # attention_probs has shape bsz x n_heads x N x N - # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] - # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] - head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) - - embedding_output = self.embeddings( - input_ids=input_ids, - position_ids=position_ids, - attention_mask=attention_mask, - inputs_embeds=inputs_embeds, - past_key_values_length=past_key_values_length, - ) - encoder_outputs = self.encoder( - embedding_output, - attention_mask=extended_attention_mask, - head_mask=head_mask, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_extended_attention_mask, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = encoder_outputs[0] - pooled_output = ( - self.pooler(sequence_output) if self.pooler is not None else None - ) - - if not return_dict: - return (sequence_output, pooled_output) + encoder_outputs[1:] - - return BaseModelOutputWithPoolingAndCrossAttentions( - last_hidden_state=sequence_output, - pooler_output=pooled_output, - past_key_values=encoder_outputs.past_key_values, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - cross_attentions=encoder_outputs.cross_attentions, - ) - - def predict_contacts(self, tokens, attention_mask): - attns = self( - tokens, - attention_mask=attention_mask, - return_dict=True, - output_attentions=True, - ).attentions - attns = torch.stack(attns, dim=1) # Matches the original model layout - # In the original model, attentions for padding tokens are completely zeroed out. - # This makes no difference most of the time because the other tokens won't attend to them, - # but it does for the contact prediction task, which takes attentions as input, - # so we have to mimic that here. - attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) - attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) - return self.contact_head(tokens, attns) - - -@add_start_docstrings( - """ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING -) -class EsmForMaskedLM(EsmPreTrainedModel): - _tied_weights_keys = ["lm_head.decoder.weight"] - - def __init__(self, config): - super().__init__(config) - - if config.is_decoder: - logger.warning( - "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " - "bi-directional self-attention." - ) - - self.esm = EsmModel(config, add_pooling_layer=False) - self.lm_head = EsmLMHead(config) - - self.init_weights() - - def get_output_embeddings(self): - return self.lm_head.decoder - - def set_output_embeddings(self, new_embeddings): - self.lm_head.decoder = new_embeddings - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=MaskedLMOutput, - config_class=_CONFIG_FOR_DOC, - mask="", - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, MaskedLMOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., - config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the - loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` - kwargs (`Dict[str, any]`, optional, defaults to *{}*): - Used to hide legacy arguments that have been deprecated. - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_attention_mask, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = outputs[0] - prediction_scores = self.lm_head(sequence_output) - - masked_lm_loss = None - if labels is not None: - loss_fct = CrossEntropyLoss() - - labels = labels.to(prediction_scores.device) - masked_lm_loss = loss_fct( - prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) - ) - - if not return_dict: - output = (prediction_scores,) + outputs[2:] - return ( - ((masked_lm_loss,) + output) if masked_lm_loss is not None else output - ) - - return MaskedLMOutput( - loss=masked_lm_loss, - logits=prediction_scores, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def predict_contacts(self, tokens, attention_mask): - return self.esm.predict_contacts(tokens, attention_mask=attention_mask) - - -class EsmLMHead(nn.Module): - """ESM Head for masked language modeling.""" - - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - self.bias = nn.Parameter(torch.zeros(config.vocab_size)) - - def forward(self, features, **kwargs): - x = self.dense(features) - x = gelu(x) - x = self.layer_norm(x) - - # project back to size of vocabulary with bias - x = self.decoder(x) + self.bias - return x - - -@add_start_docstrings( - """ - ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled - output) e.g. for GLUE tasks. - """, - ESM_START_DOCSTRING, -) -class EsmForSequenceClassification(EsmPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.config = config - - self.esm = EsmModel(config, add_pooling_layer=False) - self.classifier = EsmClassificationHead(config) - - self.init_weights() - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=SequenceClassifierOutput, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = outputs[0] - logits = self.classifier(sequence_output) - - loss = None - if labels is not None: - labels = labels.to(logits.device) - - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and ( - labels.dtype == torch.long or labels.dtype == torch.int - ): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(logits, labels) - - if not return_dict: - output = (logits,) + outputs[2:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -@add_start_docstrings( - """ - ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for - Named-Entity-Recognition (NER) tasks. - """, - ESM_START_DOCSTRING, -) -class EsmForTokenClassification(EsmPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - - self.esm = EsmModel(config, add_pooling_layer=False) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - self.classifier = nn.Linear(config.hidden_size, config.num_labels) - - self.init_weights() - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=TokenClassifierOutput, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, TokenClassifierOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - sequence_output = outputs[0] - - sequence_output = self.dropout(sequence_output) - logits = self.classifier(sequence_output) - - loss = None - if labels is not None: - loss_fct = CrossEntropyLoss() - - labels = labels.to(logits.device) - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - - if not return_dict: - output = (logits,) + outputs[2:] - return ((loss,) + output) if loss is not None else output - - return TokenClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -class EsmClassificationHead(nn.Module): - """Head for sentence-level classification tasks.""" - - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - self.out_proj = nn.Linear(config.hidden_size, config.num_labels) - - def forward(self, features, **kwargs): - x = features[:, 0, :] # take token (equiv. to [CLS]) - x = self.dropout(x) - x = self.dense(x) - x = torch.tanh(x) - x = self.dropout(x) - x = self.out_proj(x) - return x - - -def create_position_ids_from_input_ids( - input_ids, padding_idx, past_key_values_length=0 -): - """ - Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols - are ignored. This is modified from fairseq's `utils.make_positions`. - - Args: - x: torch.Tensor x: - - Returns: torch.Tensor - """ - # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. - mask = input_ids.ne(padding_idx).int() - incremental_indices = ( - torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length - ) * mask - return incremental_indices.long() + padding_idx - - -from dataclasses import asdict, dataclass -from typing import Optional - -from transformers import PretrainedConfig, logging - -logger = logging.get_logger(__name__) - -# TODO Update this -ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { - "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", - # See all ESM models at https://huggingface.co/models?filter=esm -} - - -class NTConfig(PretrainedConfig): - r""" - This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model - according to the specified arguments, defining the model architecture. Instantiating a configuration with the - defaults will yield a similar configuration to that of the ESM - [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. - Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the - documentation from [`PretrainedConfig`] for more information. - Args: - vocab_size (`int`, *optional*): - Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the - `inputs_ids` passed when calling [`ESMModel`]. - mask_token_id (`int`, *optional*): - The index of the mask token in the vocabulary. This must be included in the config because of the - "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. - pad_token_id (`int`, *optional*): - The index of the padding token in the vocabulary. This must be included in the config because certain parts - of the ESM code use this instead of the attention mask. - hidden_size (`int`, *optional*, defaults to 768): - Dimensionality of the encoder layers and the pooler layer. - num_hidden_layers (`int`, *optional*, defaults to 12): - Number of hidden layers in the Transformer encoder. - num_attention_heads (`int`, *optional*, defaults to 12): - Number of attention heads for each attention layer in the Transformer encoder. - intermediate_size (`int`, *optional*, defaults to 3072): - Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. - hidden_dropout_prob (`float`, *optional*, defaults to 0.1): - The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. - attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): - The dropout ratio for the attention probabilities. - max_position_embeddings (`int`, *optional*, defaults to 1026): - The maximum sequence length that this model might ever be used with. Typically set this to something large - just in case (e.g., 512 or 1024 or 2048). - initializer_range (`float`, *optional*, defaults to 0.02): - The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - layer_norm_eps (`float`, *optional*, defaults to 1e-12): - The epsilon used by the layer normalization layers. - position_embedding_type (`str`, *optional*, defaults to `"absolute"`): - Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. - For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to - [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). - For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models - with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). - is_decoder (`bool`, *optional*, defaults to `False`): - Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. - use_cache (`bool`, *optional*, defaults to `True`): - Whether or not the model should return the last key/values attentions (not used by all models). Only - relevant if `config.is_decoder=True`. - emb_layer_norm_before (`bool`, *optional*): - Whether to apply layer normalization after embeddings but before the main stem of the network. - token_dropout (`bool`, defaults to `False`): - When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. - Examples: - ```python - >>> from transformers import EsmModel, EsmConfig - >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() - >>> # Initializing a model from the configuration >>> model = ESMModel(configuration) - >>> # Accessing the model configuration >>> configuration = model.config - ```""" - model_type = "esm" - - def __init__( - self, - vocab_size=None, - mask_token_id=None, - pad_token_id=None, - hidden_size=768, - num_hidden_layers=12, - num_attention_heads=12, - intermediate_size=3072, - hidden_dropout_prob=0.1, - attention_probs_dropout_prob=0.1, - max_position_embeddings=1026, - initializer_range=0.02, - layer_norm_eps=1e-12, - position_embedding_type="absolute", - use_cache=True, - emb_layer_norm_before=None, - token_dropout=False, - is_folding_model=False, - esmfold_config=None, - vocab_list=None, - add_bias_fnn=True, - **kwargs, - ): - super().__init__( - pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs - ) - - self.vocab_size = vocab_size - self.hidden_size = hidden_size - self.num_hidden_layers = num_hidden_layers - self.num_attention_heads = num_attention_heads - self.intermediate_size = intermediate_size - self.hidden_dropout_prob = hidden_dropout_prob - self.attention_probs_dropout_prob = attention_probs_dropout_prob - self.max_position_embeddings = max_position_embeddings - self.initializer_range = initializer_range - self.layer_norm_eps = layer_norm_eps - self.position_embedding_type = position_embedding_type - self.use_cache = use_cache - self.emb_layer_norm_before = emb_layer_norm_before - self.token_dropout = token_dropout - self.is_folding_model = is_folding_model - - # Arguments needed for Dalmatian - self.add_bias_fnn = add_bias_fnn - if is_folding_model: - if esmfold_config is None: - logger.info( - "No esmfold_config supplied for folding model, using default values." - ) - esmfold_config = EsmFoldConfig() - elif isinstance(esmfold_config, dict): - esmfold_config = EsmFoldConfig(**esmfold_config) - self.esmfold_config = esmfold_config - if vocab_list is None: - logger.warning( - "No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" - ) - self.vocab_list = get_default_vocab_list() - else: - self.vocab_list = vocab_list - else: - self.esmfold_config = None - self.vocab_list = None - if self.esmfold_config is not None and getattr( - self.esmfold_config, "use_esm_attn_map", False - ): - raise ValueError( - "The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" - ) - - def to_dict(self): - """ - Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. - Returns: - `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, - """ - output = super().to_dict() - if isinstance(self.esmfold_config, EsmFoldConfig): - output["esmfold_config"] = self.esmfold_config.to_dict() - return output - - -@dataclass -class EsmFoldConfig: - esm_type: str = None - fp16_esm: bool = True - use_esm_attn_map: bool = False - esm_ablate_pairwise: bool = False - esm_ablate_sequence: bool = False - esm_input_dropout: float = 0 - - embed_aa: bool = True - bypass_lm: bool = False - - lddt_head_hid_dim: int = 128 - trunk: "TrunkConfig" = None - - def __post_init__(self): - if self.trunk is None: - self.trunk = TrunkConfig() - elif isinstance(self.trunk, dict): - self.trunk = TrunkConfig(**self.trunk) - - def to_dict(self): - """ - Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. - Returns: - `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, - """ - output = asdict(self) - output["trunk"] = self.trunk.to_dict() - return output - - -@dataclass -class TrunkConfig: - num_blocks: int = 48 - sequence_state_dim: int = 1024 - pairwise_state_dim: int = 128 - sequence_head_width: int = 32 - pairwise_head_width: int = 32 - position_bins: int = 32 - dropout: float = 0 - layer_drop: float = 0 - cpu_grad_checkpoint: bool = False - max_recycles: int = 4 - chunk_size: Optional[int] = 128 - structure_module: "StructureModuleConfig" = None - - def __post_init__(self): - if self.structure_module is None: - self.structure_module = StructureModuleConfig() - elif isinstance(self.structure_module, dict): - self.structure_module = StructureModuleConfig(**self.structure_module) - - if self.max_recycles <= 0: - raise ValueError( - f"`max_recycles` should be positive, got {self.max_recycles}." - ) - if self.sequence_state_dim % self.sequence_state_dim != 0: - raise ValueError( - "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" - f" {self.sequence_state_dim} and {self.sequence_state_dim}." - ) - if self.pairwise_state_dim % self.pairwise_state_dim != 0: - raise ValueError( - "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" - f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." - ) - - sequence_num_heads = self.sequence_state_dim // self.sequence_head_width - pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width - - if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: - raise ValueError( - "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" - f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." - ) - if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: - raise ValueError( - "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" - f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." - ) - if self.pairwise_state_dim % 2 != 0: - raise ValueError( - f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." - ) - - if self.dropout >= 0.4: - raise ValueError( - f"`dropout` should not be greater than 0.4, got {self.dropout}." - ) - - def to_dict(self): - """ - Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. - Returns: - `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, - """ - output = asdict(self) - output["structure_module"] = self.structure_module.to_dict() - return output - - -@dataclass -class StructureModuleConfig: - """ - Args: - sequence_dim: - Single representation channel dimension - pairwise_dim: - Pair representation channel dimension - ipa_dim: - IPA hidden channel dimension - resnet_dim: - Angle resnet (Alg. 23 lines 11-14) hidden channel dimension - num_heads_ipa: - Number of IPA heads - num_qk_points: - Number of query/key points to generate during IPA - num_v_points: - Number of value points to generate during IPA - dropout_rate: - Dropout rate used throughout the layer - num_blocks: - Number of structure module blocks - num_transition_layers: - Number of layers in the single representation transition (Alg. 23 lines 8-9) - num_resnet_blocks: - Number of blocks in the angle resnet - num_angles: - Number of angles to generate in the angle resnet - trans_scale_factor: - Scale of single representation transition hidden dimension - epsilon: - Small number used in angle resnet normalization - inf: - Large number used for attention masking - """ - - sequence_dim: int = 384 - pairwise_dim: int = 128 - ipa_dim: int = 16 - resnet_dim: int = 128 - num_heads_ipa: int = 12 - num_qk_points: int = 4 - num_v_points: int = 8 - dropout_rate: float = 0.1 - num_blocks: int = 8 - num_transition_layers: int = 1 - num_resnet_blocks: int = 2 - num_angles: int = 7 - trans_scale_factor: int = 10 - epsilon: float = 1e-8 - inf: float = 1e5 - - def to_dict(self): - return asdict(self) - - -def get_default_vocab_list(): - return ( - "", - "", - "", - "", - "L", - "A", - "G", - "V", - "S", - "E", - "R", - "T", - "I", - "D", - "P", - "K", - "Q", - "N", - "F", - "Y", - "M", - "H", - "W", - "C", - "X", - "B", - "U", - "Z", - "O", - ".", - "-", - "", - "", - ) - - -def rotate_half(x): - x1, x2 = x.chunk(2, dim=-1) - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(x, cos, sin): - cos = cos[:, :, : x.shape[-2], :] - sin = sin[:, :, : x.shape[-2], :] - - return (x * cos) + (rotate_half(x) * sin) - - -def gelu(x): - """ - This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. - """ - return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) - - -def symmetrize(x): - "Make layer symmetric in final two dimensions, used for contact prediction." - return x + x.transpose(-1, -2) - - -def average_product_correct(x): - "Perform average product correct, used for contact prediction." - a1 = x.sum(-1, keepdims=True) - a2 = x.sum(-2, keepdims=True) - a12 = x.sum((-1, -2), keepdims=True) - - avg = a1 * a2 - avg.div_(a12) # in-place to reduce memory - normalized = x - avg - return normalized - - -class RotaryEmbedding(torch.nn.Module): - """ - Rotary position embeddings based on those in - [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation - matrices which depend on their relative positions. - """ - - def __init__(self, dim: int): - super().__init__() - # Generate and save the inverse frequency buffer (non trainable) - inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) - inv_freq = inv_freq - self.register_buffer("inv_freq", inv_freq) - - self._seq_len_cached = None - self._cos_cached = None - self._sin_cached = None - - def _update_cos_sin_tables(self, x, seq_dimension=2): - seq_len = x.shape[seq_dimension] - - # Reset the tables if the sequence length has changed, - # or if we're on a new device (possibly due to tracing for instance) - if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: - self._seq_len_cached = seq_len - t = torch.arange(x.shape[seq_dimension], device=x.device).type_as( - self.inv_freq - ) - freqs = torch.outer(t, self.inv_freq) - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - - self._cos_cached = emb.cos()[None, None, :, :] - self._sin_cached = emb.sin()[None, None, :, :] - - return self._cos_cached, self._sin_cached - - def forward( - self, q: torch.Tensor, k: torch.Tensor - ) -> Tuple[torch.Tensor, torch.Tensor]: - self._cos_cached, self._sin_cached = self._update_cos_sin_tables( - k, seq_dimension=-2 - ) - - return ( - apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), - apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), - ) - - -class EsmContactPredictionHead(nn.Module): - """Performs symmetrization, apc, and computes a logistic regression on the output features""" - - def __init__( - self, - in_features: int, - bias=True, - eos_idx: int = 2, - ): - super().__init__() - self.in_features = in_features - self.eos_idx = eos_idx - self.regression = nn.Linear(in_features, 1, bias) - self.activation = nn.Sigmoid() - - def forward(self, tokens, attentions): - # remove eos token attentions - eos_mask = tokens.ne(self.eos_idx).to(attentions) - eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) - attentions = attentions * eos_mask[:, None, None, :, :] - attentions = attentions[..., :-1, :-1] - # remove cls token attentions - attentions = attentions[..., 1:, 1:] - batch_size, layers, heads, seqlen, _ = attentions.size() - attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) - - # features: batch x channels x tokens x tokens (symmetric) - attentions = attentions.to( - self.regression.weight.device - ) # attentions always float32, may need to convert to float16 - attentions = average_product_correct(symmetrize(attentions)) - attentions = attentions.permute(0, 2, 3, 1) - return self.activation(self.regression(attentions).squeeze(3)) - - -class EsmEmbeddings(nn.Module): - """ - Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. - """ - - def __init__(self, config): - super().__init__() - self.word_embeddings = nn.Embedding( - config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id - ) - - if config.emb_layer_norm_before: - self.layer_norm = nn.LayerNorm( - config.hidden_size, eps=config.layer_norm_eps - ) - else: - self.layer_norm = None - self.dropout = nn.Dropout(config.hidden_dropout_prob) - # position_ids (1, len position emb) is contiguous in memory and exported when serialized - self.position_embedding_type = getattr( - config, "position_embedding_type", "absolute" - ) - self.register_buffer( - "position_ids", - torch.arange(config.max_position_embeddings).expand((1, -1)), - persistent=False, - ) - - self.padding_idx = config.pad_token_id - self.position_embeddings = nn.Embedding( - config.max_position_embeddings, - config.hidden_size, - padding_idx=self.padding_idx, - ) - self.token_dropout = config.token_dropout - self.mask_token_id = config.mask_token_id - - def forward( - self, - input_ids=None, - attention_mask=None, - position_ids=None, - inputs_embeds=None, - past_key_values_length=0, - ): - if position_ids is None: - if input_ids is not None: - # Create the position ids from the input token ids. Any padded tokens remain padded. - position_ids = create_position_ids_from_input_ids( - input_ids, self.padding_idx, past_key_values_length - ) - else: - position_ids = self.create_position_ids_from_inputs_embeds( - inputs_embeds - ) - - if inputs_embeds is None: - inputs_embeds = self.word_embeddings(input_ids) - - # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an - # embedding_scale factor here. - embeddings = inputs_embeds - - # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout - # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, - # masked tokens are treated as if they were selected for input dropout and zeroed out. - # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by - # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). - # This is analogous to the way that dropout layers scale down outputs during evaluation when not - # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). - if self.token_dropout: - embeddings.masked_fill_( - (input_ids == self.mask_token_id).unsqueeze(-1), 0.0 - ) - mask_ratio_train = ( - 0.15 * 0.8 - ) # Hardcoded as the ratio used in all ESM model training runs - src_lengths = attention_mask.sum(-1) - mask_ratio_observed = (input_ids == self.mask_token_id).sum( - -1 - ).float() / src_lengths - embeddings = ( - embeddings - * (1 - mask_ratio_train) - / (1 - mask_ratio_observed)[:, None, None] - ).to(embeddings.dtype) - - if self.position_embedding_type == "absolute": - position_embeddings = self.position_embeddings(position_ids) - embeddings += position_embeddings - - if self.layer_norm is not None: - embeddings = self.layer_norm(embeddings) - # if attention_mask is not None: - # embeddings = (embeddings * attention_mask.unsqueeze(-1)).to( - # embeddings.dtype - # ) - # FIRST DIFF BETWEEN JAX AND TORCH - # Matt: I think this line was copied incorrectly from BERT, disabling it for now. - # embeddings = self.dropout(embeddings) - return embeddings - - def create_position_ids_from_inputs_embeds(self, inputs_embeds): - """ - We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. - Args: - inputs_embeds: torch.Tensor - Returns: torch.Tensor - """ - input_shape = inputs_embeds.size()[:-1] - sequence_length = input_shape[1] - - position_ids = torch.arange( - self.padding_idx + 1, - sequence_length + self.padding_idx + 1, - dtype=torch.long, - device=inputs_embeds.device, - ) - return position_ids.unsqueeze(0).expand(input_shape) - - -class EsmSelfAttention(nn.Module): - def __init__(self, config, position_embedding_type=None): - super().__init__() - if config.hidden_size % config.num_attention_heads != 0 and not hasattr( - config, "embedding_size" - ): - raise ValueError( - f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " - f"heads ({config.num_attention_heads})" - ) - - self.num_attention_heads = config.num_attention_heads - self.attention_head_size = int(config.hidden_size / config.num_attention_heads) - self.all_head_size = self.num_attention_heads * self.attention_head_size - - self.query = nn.Linear(config.hidden_size, self.all_head_size) - self.key = nn.Linear(config.hidden_size, self.all_head_size) - self.value = nn.Linear(config.hidden_size, self.all_head_size) - - self.dropout = nn.Dropout(config.attention_probs_dropout_prob) - self.position_embedding_type = position_embedding_type or getattr( - config, "position_embedding_type", "absolute" - ) - self.rotary_embeddings = None - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - self.max_position_embeddings = config.max_position_embeddings - self.distance_embedding = nn.Embedding( - 2 * config.max_position_embeddings - 1, self.attention_head_size - ) - elif self.position_embedding_type == "rotary": - self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) - - self.is_decoder = config.is_decoder - - def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: - new_x_shape = x.size()[:-1] + ( - self.num_attention_heads, - self.attention_head_size, - ) - x = x.view(new_x_shape) - return x.permute(0, 2, 1, 3) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.FloatTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.Tensor]: - mixed_query_layer = self.query(hidden_states) - - # If this is instantiated as a cross-attention module, the keys - # and values come from an encoder; the attention mask needs to be - # such that the encoder's padding tokens are not attended to. - is_cross_attention = encoder_hidden_states is not None - - if is_cross_attention and past_key_value is not None: - # reuse k,v, cross_attentions - key_layer = past_key_value[0] - value_layer = past_key_value[1] - attention_mask = encoder_attention_mask - elif is_cross_attention: - key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) - value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) - attention_mask = encoder_attention_mask - elif past_key_value is not None: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - key_layer = torch.cat([past_key_value[0], key_layer], dim=2) - value_layer = torch.cat([past_key_value[1], value_layer], dim=2) - else: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - - query_layer = self.transpose_for_scores(mixed_query_layer) - - # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). - # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, - # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original - # ESM code and fix rotary embeddings. - query_layer = query_layer * self.attention_head_size**-0.5 - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_layer, value_layer) - - if self.position_embedding_type == "rotary": - query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) - - # Take the dot product between "query" and "key" to get the raw attention scores. - attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) - - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - seq_length = hidden_states.size()[1] - position_ids_l = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(-1, 1) - position_ids_r = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(1, -1) - distance = position_ids_l - position_ids_r - positional_embedding = self.distance_embedding( - distance + self.max_position_embeddings - 1 - ) - positional_embedding = positional_embedding.to( - dtype=query_layer.dtype - ) # fp16 compatibility - - if self.position_embedding_type == "relative_key": - relative_position_scores = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - attention_scores = attention_scores + relative_position_scores - elif self.position_embedding_type == "relative_key_query": - relative_position_scores_query = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - relative_position_scores_key = torch.einsum( - "bhrd,lrd->bhlr", key_layer, positional_embedding - ) - attention_scores = ( - attention_scores - + relative_position_scores_query - + relative_position_scores_key - ) - - if attention_mask is not None: - attention_scores = attention_scores + attention_mask - - # Normalize the attention scores to probabilities. - attention_probs = nn.functional.softmax(attention_scores, dim=-1) - attention_mask_widened = attention_mask.repeat( - attention_probs.shape[0], - attention_probs.shape[1], - attention_probs.shape[2], - 1 - ).permute(0,1,3,2) == 0 - attention_probs = torch.where(attention_mask_widened, attention_probs, 0.00097656) - # SECOND DIFF BETWEEN JAX AND TORCH - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_probs = self.dropout(attention_probs) - - # Mask heads if we want to - if head_mask is not None: - attention_probs = attention_probs * head_mask - - context_layer = torch.matmul(attention_probs, value_layer) - - context_layer = context_layer.permute(0, 2, 1, 3).contiguous() - new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) - context_layer = context_layer.view(new_context_layer_shape) - - outputs = ( - (context_layer, attention_probs) if output_attentions else (context_layer,) - ) - - if self.is_decoder: - outputs = outputs + (past_key_value,) - return outputs - - -class EsmSelfOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states += input_tensor - return hidden_states - - -class EsmAttention(nn.Module): - def __init__(self, config): - super().__init__() - self.self = EsmSelfAttention(config) - self.output = EsmSelfOutput(config) - self.pruned_heads = set() - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - def prune_heads(self, heads): - if len(heads) == 0: - return - heads, index = find_pruneable_heads_and_indices( - heads, - self.self.num_attention_heads, - self.self.attention_head_size, - self.pruned_heads, - ) - - # Prune linear layers - self.self.query = prune_linear_layer(self.self.query, index) - self.self.key = prune_linear_layer(self.self.key, index) - self.self.value = prune_linear_layer(self.self.value, index) - self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) - - # Update hyper params and store pruned heads - self.self.num_attention_heads = self.self.num_attention_heads - len(heads) - self.self.all_head_size = ( - self.self.attention_head_size * self.self.num_attention_heads - ) - self.pruned_heads = self.pruned_heads.union(heads) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - hidden_states_ln = self.LayerNorm(hidden_states) - self_outputs = self.self( - hidden_states_ln, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - attention_output = self.output(self_outputs[0], hidden_states) - outputs = (attention_output,) + self_outputs[ - 1: - ] # add attentions if we output them - return outputs - - -class MultiHeadAttention(nn.Module): - def __init__(self, config, omics_of_interest_size: int, other_omic_size: int, position_embedding_type=None): - super().__init__() - if config.hidden_size % config.num_attention_heads != 0 and not hasattr( - config, "embedding_size" - ): - raise ValueError( - f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " - f"heads ({config.num_attention_heads})" - ) - - self.num_attention_heads = config.num_attention_heads - self.attention_head_size = int(config.hidden_size / config.num_attention_heads) - self.all_head_size = self.num_attention_heads * self.attention_head_size - - self.query = nn.Linear(omics_of_interest_size, omics_of_interest_size) # 3072, 3072 - - self.key = nn.Linear(other_omic_size, omics_of_interest_size) # 768, 3072 - - self.value = nn.Linear(other_omic_size, omics_of_interest_size) # 768, 3072 - - self.dense = nn.Linear(omics_of_interest_size, omics_of_interest_size) # 3072, 3072 - - - #self.dropout = nn.Dropout(config.attention_probs_dropout_prob) - self.position_embedding_type = position_embedding_type or getattr( - config, "position_embedding_type", "absolute" - ) - self.rotary_embeddings = None - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - self.max_position_embeddings = config.max_position_embeddings - self.distance_embedding = nn.Embedding( - 2 * config.max_position_embeddings - 1, self.attention_head_size - ) - elif self.position_embedding_type == "rotary": - self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) - - self.is_decoder = config.is_decoder - - def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: - new_x_shape = x.size()[:-1] + ( - self.num_attention_heads, - self.attention_head_size, - ) - x = x.view(new_x_shape) - return x.permute(0, 2, 1, 3) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.FloatTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, - output_attentions: Optional[bool] = False, - ) -> Dict[str, torch.Tensor]: - mixed_query_layer = self.query(hidden_states) - - # If this is instantiated as a cross-attention module, the keys - # and values come from an encoder; the attention mask needs to be - # such that the encoder's padding tokens are not attended to. - is_cross_attention = encoder_hidden_states is not None - - if is_cross_attention and past_key_value is not None: - # reuse k,v, cross_attentions - key_layer = past_key_value[0] - value_layer = past_key_value[1] - attention_mask = encoder_attention_mask - elif is_cross_attention: - key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) - value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) - attention_mask = encoder_attention_mask - elif past_key_value is not None: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - key_layer = torch.cat([past_key_value[0], key_layer], dim=2) - value_layer = torch.cat([past_key_value[1], value_layer], dim=2) - else: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - - query_layer = self.transpose_for_scores(mixed_query_layer) - - # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). - # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, - # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original - # ESM code and fix rotary embeddings. - query_layer = query_layer * self.attention_head_size**-0.5 - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_layer, value_layer) - - if self.position_embedding_type == "rotary": - query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) - - # Take the dot product between "query" and "key" to get the raw attention scores. - attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) - - if ( - self.position_embedding_type == "relative_key" - or self.position_embedding_type == "relative_key_query" - ): - seq_length = hidden_states.size()[1] - position_ids_l = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(-1, 1) - position_ids_r = torch.arange( - seq_length, dtype=torch.long, device=hidden_states.device - ).view(1, -1) - distance = position_ids_l - position_ids_r - positional_embedding = self.distance_embedding( - distance + self.max_position_embeddings - 1 - ) - positional_embedding = positional_embedding.to( - dtype=query_layer.dtype - ) # fp16 compatibility - - if self.position_embedding_type == "relative_key": - relative_position_scores = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - attention_scores = attention_scores + relative_position_scores - elif self.position_embedding_type == "relative_key_query": - relative_position_scores_query = torch.einsum( - "bhld,lrd->bhlr", query_layer, positional_embedding - ) - relative_position_scores_key = torch.einsum( - "bhrd,lrd->bhlr", key_layer, positional_embedding - ) - attention_scores = ( - attention_scores - + relative_position_scores_query - + relative_position_scores_key - ) - - if attention_mask is not None: - # Apply the attention mask is (precomputed for all layers in NTModel forward() function) - #attention_scores = attention_scores + attention_mask - attention_scores = torch.where(attention_mask, attention_scores, -1e30) - #attention_logits = jnp.where(attention_mask, attention_logits, -1e30) - - # Normalize the attention scores to probabilities. - attention_probs = nn.functional.softmax(attention_scores, dim=-1) - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - #attention_probs = self.dropout(attention_probs) - - # Mask heads if we want to - if head_mask is not None: - attention_probs = attention_probs * head_mask - - context_layer = torch.matmul(attention_probs, value_layer) - - context_layer = context_layer.permute(0, 2, 1, 3).contiguous() - new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) - context_layer = context_layer.view(new_context_layer_shape) - - outputs = ( - (context_layer, attention_probs) if output_attentions else (context_layer,) - ) - - if self.is_decoder: - outputs = outputs + (past_key_value,) - return { - "embeddings": self.dense(context_layer) + hidden_states, - "query_heads": self.transpose_for_scores(mixed_query_layer), - "value_heads": self.transpose_for_scores(self.value(encoder_hidden_states)), - "key_heads": self.transpose_for_scores(self.key(encoder_hidden_states)), - "attention_probs": attention_probs, - "attention_scores": attention_scores, - "context_layer": context_layer, - } - -class EsmIntermediate(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear( - config.hidden_size, - int(config.intermediate_size * 2), - bias=config.add_bias_fnn, - ) - self.activation_fn = SiLU() - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - hidden_states = self.dense(hidden_states) - - # GLU - x1, x2 = hidden_states.split(int(hidden_states.size(-1) / 2), -1) - hidden_states = self.activation_fn(x1) * x2 - - return hidden_states - - -class EsmOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear( - config.intermediate_size, config.hidden_size, bias=config.add_bias_fnn - ) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states += input_tensor - return hidden_states - - -class EsmLayer(nn.Module): - def __init__(self, config): - super().__init__() - self.chunk_size_feed_forward = config.chunk_size_feed_forward - self.seq_len_dim = 1 - self.attention = EsmAttention(config) - self.is_decoder = config.is_decoder - self.add_cross_attention = config.add_cross_attention - if self.add_cross_attention: - if not self.is_decoder: - raise RuntimeError( - f"{self} should be used as a decoder model if cross attention is added" - ) - self.crossattention = EsmAttention(config) - self.intermediate = EsmIntermediate(config) - self.output = EsmOutput(config) - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 - self_attn_past_key_value = ( - past_key_value[:2] if past_key_value is not None else None - ) - self_attention_outputs = self.attention( - hidden_states, - attention_mask, - head_mask, - output_attentions=output_attentions, - past_key_value=self_attn_past_key_value, - ) - attention_output = self_attention_outputs[0] - - # if decoder, the last output is tuple of self-attn cache - if self.is_decoder: - outputs = self_attention_outputs[1:-1] - present_key_value = self_attention_outputs[-1] - else: - outputs = self_attention_outputs[ - 1: - ] # add self attentions if we output attention weights - - cross_attn_present_key_value = None - if self.is_decoder and encoder_hidden_states is not None: - if not hasattr(self, "crossattention"): - raise AttributeError( - f"If `encoder_hidden_states` are passed, {self} has to be instantiated" - " with cross-attention layers by setting `config.add_cross_attention=True`" - ) - - # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple - cross_attn_past_key_value = ( - past_key_value[-2:] if past_key_value is not None else None - ) - cross_attention_outputs = self.crossattention( - attention_output, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - cross_attn_past_key_value, - output_attentions, - ) - attention_output = cross_attention_outputs[0] - outputs = ( - outputs + cross_attention_outputs[1:-1] - ) # add cross attentions if we output attention weights - - # add cross-attn cache to positions 3,4 of present_key_value tuple - cross_attn_present_key_value = cross_attention_outputs[-1] - present_key_value = present_key_value + cross_attn_present_key_value - - layer_output = self.feed_forward_chunk(attention_output) - - outputs = (layer_output,) + outputs - - # if decoder, return the attn key/values as the last output - if self.is_decoder: - outputs = outputs + (present_key_value,) - return outputs - - def feed_forward_chunk(self, attention_output): - attention_output_ln = self.LayerNorm(attention_output) - intermediate_output = self.intermediate(attention_output_ln) - layer_output = self.output(intermediate_output, attention_output) - return layer_output - - -class EsmEncoder(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.layer = nn.ModuleList( - [EsmLayer(config) for _ in range(config.num_hidden_layers)] - ) - self.emb_layer_norm_after = nn.LayerNorm( - config.hidden_size, eps=config.layer_norm_eps - ) - self.gradient_checkpointing = False - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_values=None, - use_cache=None, - output_attentions=False, - output_hidden_states=False, - return_dict=True, - ): - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " - "`use_cache=False`..." - ) - use_cache = False - all_hidden_states = () if output_hidden_states else None - all_self_attentions = () if output_attentions else None - all_cross_attentions = ( - () if output_attentions and self.config.add_cross_attention else None - ) - - next_decoder_cache = () if use_cache else None - for i, layer_module in enumerate(self.layer): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - layer_head_mask = head_mask[i] if head_mask is not None else None - past_key_value = past_key_values[i] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs, past_key_value, output_attentions) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(layer_module), - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - ) - else: - layer_outputs = layer_module( - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - - hidden_states = layer_outputs[0] - if use_cache: - next_decoder_cache += (layer_outputs[-1],) - if output_attentions: - all_self_attentions = all_self_attentions + (layer_outputs[1],) - if self.config.add_cross_attention: - all_cross_attentions = all_cross_attentions + (layer_outputs[2],) - - if self.emb_layer_norm_after: - hidden_states = self.emb_layer_norm_after(hidden_states) - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if not return_dict: - return tuple( - v - for v in [ - hidden_states, - next_decoder_cache, - all_hidden_states, - all_self_attentions, - all_cross_attentions, - ] - if v is not None - ) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=next_decoder_cache, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - cross_attentions=all_cross_attentions, - ) - - -# Copied from transformers.models.bert.modeling_bert.BertPooler -class EsmPooler(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.activation = nn.Tanh() - - def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: - # We "pool" the model by simply taking the hidden state corresponding - # to the first token. - first_token_tensor = hidden_states[:, 0] - pooled_output = self.dense(first_token_tensor) - pooled_output = self.activation(pooled_output) - return pooled_output - - -class EsmPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = NTConfig - base_model_prefix = "esm" - _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"] - - # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights - def _init_weights(self, module): - """Initialize the weights""" - if isinstance(module, nn.Linear): - # Slightly different from the TF version which uses truncated_normal for initialization - # cf https://github.com/pytorch/pytorch/pull/5617 - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - -ESM_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - Parameters: - config ([`NTConfig`]): Model configuration class with all the parameters of the - model. Initializing with a config file does not load the weights associated with the model, only the - configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - -ESM_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `({0})`): - Indices of input sequence tokens in the vocabulary. - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - [What are attention masks?](../glossary#attention-mask) - position_ids (`torch.LongTensor` of shape `({0})`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.max_position_embeddings - 1]`. - [What are position IDs?](../glossary#position-ids) - head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): - Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", - ESM_START_DOCSTRING, -) -class NTModel(EsmPreTrainedModel): - """ - The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of - cross-attention is added between the self-attention layers, following the architecture described in [Attention is - all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, - Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. - To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set - to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and - `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. - """ - - supports_gradient_checkpointing = False - - def __init__(self, config, add_pooling_layer=True): - super().__init__(config) - self.config = config - - self.embeddings = EsmEmbeddings(config) - self.encoder = EsmEncoder(config) - - self.pooler = EsmPooler(config) if add_pooling_layer else None - - self.contact_head = EsmContactPredictionHead( - in_features=config.num_hidden_layers * config.num_attention_heads, bias=True - ) - - # Initialize weights and apply final processing - self.post_init() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, EsmEncoder): - module.gradient_checkpointing = value - - def get_input_embeddings(self): - return self.embeddings.word_embeddings - - def set_input_embeddings(self, value): - self.embeddings.word_embeddings = value - - def _prune_heads(self, heads_to_prune): - """ - Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base - class PreTrainedModel - """ - for layer, heads in heads_to_prune.items(): - self.encoder.layer[layer].attention.prune_heads(heads) - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=BaseModelOutputWithPoolingAndCrossAttentions, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.Tensor] = None, - encoder_hidden_states: Optional[torch.Tensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: - r""" - encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if - the model is configured as a decoder. - encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in - the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): - Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - """ - output_attentions = ( - output_attentions - if output_attentions is not None - else self.config.output_attentions - ) - output_hidden_states = ( - output_hidden_states - if output_hidden_states is not None - else self.config.output_hidden_states - ) - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - if self.config.is_decoder: - use_cache = use_cache if use_cache is not None else self.config.use_cache - else: - use_cache = False - - if input_ids is not None and inputs_embeds is not None: - raise ValueError( - "You cannot specify both input_ids and inputs_embeds at the same time" - ) - elif input_ids is not None: - input_shape = input_ids.size() - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") - - batch_size, seq_length = input_shape - device = input_ids.device if input_ids is not None else inputs_embeds.device - - # past_key_values_length - past_key_values_length = ( - past_key_values[0][0].shape[2] if past_key_values is not None else 0 - ) - - if attention_mask is None: - attention_mask = torch.ones( - ((batch_size, seq_length + past_key_values_length)), device=device - ) - - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( - attention_mask, input_shape - ) - - # If a 2D or 3D attention mask is provided for the cross-attention - # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] - if self.config.is_decoder and encoder_hidden_states is not None: - ( - encoder_batch_size, - encoder_sequence_length, - _, - ) = encoder_hidden_states.size() - encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) - if encoder_attention_mask is None: - encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) - encoder_extended_attention_mask = self.invert_attention_mask( - encoder_attention_mask - ) - else: - encoder_extended_attention_mask = None - - # Prepare head mask if needed - # 1.0 in head_mask indicate we keep the head - # attention_probs has shape bsz x n_heads x N x N - # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] - # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] - head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) - - embedding_output = self.embeddings( - input_ids=input_ids, - position_ids=position_ids, - attention_mask=attention_mask, - inputs_embeds=inputs_embeds, - past_key_values_length=past_key_values_length, - ) - encoder_outputs = self.encoder( - embedding_output, - attention_mask=extended_attention_mask, - head_mask=head_mask, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_extended_attention_mask, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = encoder_outputs[0] - pooled_output = ( - self.pooler(sequence_output) if self.pooler is not None else None - ) - - if not return_dict: - return (sequence_output, pooled_output) + encoder_outputs[1:] - - return BaseModelOutputWithPoolingAndCrossAttentions( - last_hidden_state=sequence_output, - pooler_output=pooled_output, - past_key_values=encoder_outputs.past_key_values, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - cross_attentions=encoder_outputs.cross_attentions, - ) - - def predict_contacts(self, tokens, attention_mask): - attns = self( - tokens, - attention_mask=attention_mask, - return_dict=True, - output_attentions=True, - ).attentions - attns = torch.stack(attns, dim=1) # Matches the original model layout - # In the original model, attentions for padding tokens are completely zeroed out. - # This makes no difference most of the time because the other tokens won't attend to them, - # but it does for the contact prediction task, which takes attentions as input, - # so we have to mimic that here. - attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3) - attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4) - return self.contact_head(tokens, attns) - - -@add_start_docstrings( - """ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING -) -class NTForMaskedLM(EsmPreTrainedModel): - _tied_weights_keys = ["lm_head.decoder.weight"] - - def __init__(self, config): - super().__init__(config) - - if config.is_decoder: - logger.warning( - "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " - "bi-directional self-attention." - ) - - self.esm = NTModel(config, add_pooling_layer=False) - self.lm_head = EsmLMHead(config) - - self.init_weights() - - def get_output_embeddings(self): - return self.lm_head.decoder - - def set_output_embeddings(self, new_embeddings): - self.lm_head.decoder = new_embeddings - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=MaskedLMOutput, - config_class=_CONFIG_FOR_DOC, - mask="", - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, MaskedLMOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., - config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the - loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` - kwargs (`Dict[str, any]`, optional, defaults to *{}*): - Used to hide legacy arguments that have been deprecated. - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_attention_mask, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = outputs[0] - prediction_scores = self.lm_head(sequence_output) - - masked_lm_loss = None - if labels is not None: - loss_fct = CrossEntropyLoss() - - labels = labels.to(prediction_scores.device) - masked_lm_loss = loss_fct( - prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) - ) - - if not return_dict: - output = (prediction_scores,) + outputs[2:] - return ( - ((masked_lm_loss,) + output) if masked_lm_loss is not None else output - ) - - return MaskedLMOutput( - loss=masked_lm_loss, - logits=prediction_scores, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def predict_contacts(self, tokens, attention_mask): - return self.esm.predict_contacts(tokens, attention_mask=attention_mask) - - -class EsmLMHead(nn.Module): - """ESM Head for masked language modeling.""" - - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - self.bias = nn.Parameter(torch.zeros(config.vocab_size)) - - def forward(self, features, **kwargs): - x = self.dense(features) - x = gelu(x) - x = self.layer_norm(x) - - # project back to size of vocabulary with bias - x = self.decoder(x) + self.bias - return x - - -@add_start_docstrings( - """ - ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled - output) e.g. for GLUE tasks. - """, - ESM_START_DOCSTRING, -) -class EsmForSequenceClassification(EsmPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.config = config - - self.esm = NTModel(config, add_pooling_layer=False) - self.classifier = EsmClassificationHead(config) - - self.init_weights() - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=SequenceClassifierOutput, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - sequence_output = outputs[0] - logits = self.classifier(sequence_output) - - loss = None - if labels is not None: - labels = labels.to(logits.device) - - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and ( - labels.dtype == torch.long or labels.dtype == torch.int - ): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(logits, labels) - - if not return_dict: - output = (logits,) + outputs[2:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -@add_start_docstrings( - """ - ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for - Named-Entity-Recognition (NER) tasks. - """, - ESM_START_DOCSTRING, -) -class EsmForTokenClassification(EsmPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - - self.esm = NTModel(config, add_pooling_layer=False) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - self.classifier = nn.Linear(config.hidden_size, config.num_labels) - - self.init_weights() - - @add_start_docstrings_to_model_forward( - ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length") - ) - @add_code_sample_docstrings( - checkpoint=_CHECKPOINT_FOR_DOC, - output_type=TokenClassifierOutput, - config_class=_CONFIG_FOR_DOC, - ) - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, TokenClassifierOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. - """ - return_dict = ( - return_dict if return_dict is not None else self.config.use_return_dict - ) - - outputs = self.esm( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - sequence_output = outputs[0] - - sequence_output = self.dropout(sequence_output) - logits = self.classifier(sequence_output) - - loss = None - if labels is not None: - loss_fct = CrossEntropyLoss() - - labels = labels.to(logits.device) - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - - if not return_dict: - output = (logits,) + outputs[2:] - return ((loss,) + output) if loss is not None else output - - return TokenClassifierOutput( - loss=loss, - logits=logits, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - -class EsmClassificationHead(nn.Module): - """Head for sentence-level classification tasks.""" - - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - self.out_proj = nn.Linear(config.hidden_size, config.num_labels) - - def forward(self, features, **kwargs): - x = features[:, 0, :] # take token (equiv. to [CLS]) - x = self.dropout(x) - x = self.dense(x) - x = torch.tanh(x) - x = self.dropout(x) - x = self.out_proj(x) - return x - - -def create_position_ids_from_input_ids( - input_ids, padding_idx, past_key_values_length=0 -): - """ - Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols - are ignored. This is modified from fairseq's `utils.make_positions`. - Args: - x: torch.Tensor x: - Returns: torch.Tensor - """ - # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. - mask = input_ids.ne(padding_idx).int() - incremental_indices = ( - torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length - ) * mask - return incremental_indices.long() + padding_idx - +from .isoformer_config import IsoformerConfig +from transformers import PreTrainedModel +from .modeling_esm import NTForMaskedLM, MultiHeadAttention +from .esm_config import NTConfig +from .modeling_esm_original import EsmForMaskedLM +from transformers.models.esm.configuration_esm import EsmConfig +from enformer_pytorch import Enformer, str_to_one_hot, EnformerConfig +import torch +from torch import nn class Isoformer(PreTrainedModel): config_class = IsoformerConfig @@ -3411,30 +54,8 @@ class Isoformer(PreTrainedModel): ) self.config = config - # self.enformer_config = EnformerConfig( - # dim=config.enformer_dim, - # depth=config.enformer_depth, - # heads=config.enformer_heads, - # output_heads=dict( - # human=1, - # mouse=1 # TODO CHANGE - # ), - # target_length=config.enformer_target_length, # 896, - # attn_dim_key=config.enformer_attn_dim_key, - # dropout_rate=0.4, - # attn_dropout=0.05, - # pos_dropout=0.01, - # use_checkpointing=config.enformer_use_checkpointing, - # use_convnext=config.enformer_use_convnext, - # num_downsamples=config.enformer_num_downsamples, - # # genetic sequence is downsampled 2 ** 7 == 128x in default Enformer - can be changed for higher resolution - # dim_divisible_by=config.enformer_dim_divisible_by, - # use_tf_gamma=False, - # ) - - self.esm_model = EsmForMaskedLM(self.esm_config) # protein encoder - self.nt_model = NTForMaskedLM(self.nt_config) # rna encoder - #self.enformer_model = Enformer(self.enformer_config) # dna encoder + self.esm_model = EsmForMaskedLM(self.esm_config) + self.nt_model = NTForMaskedLM(self.nt_config) self.enformer_model = Enformer.from_pretrained("EleutherAI/enformer-official-rough") self.cross_attention_layer_rna = MultiHeadAttention(